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Summary Statistics

Mean
In mathematics, mean has several different definitions depending on the context.
In probability and statistics, mean and expected value are used synonymously to refer to one measure of the central
tendency either of a probability distribution or of the random variable characterized by that distribution. In the case
of a discrete probability distribution of a random variable X, the mean is equal to the sum over every possible value
weighted by the probability of that value; that is, it is computed by taking the product of each possible value x of X
and its probability P(x), and then adding all these products together, giving .[1] An analogous

formula applies to the case of a continuous probability distribution. Not every probability distribution has a defined
mean; see the Cauchy distribution for an example. Moreover, for some distributions the mean is infinite: for
example, when the probability of the value is for n = 1, 2, 3, ....
For a data set, the terms arithmetic mean, mathematical expectation, and sometimes average are used synonymously
to refer to a central value of a discrete set of numbers: specifically, the sum of the values divided by the number of
values. The arithmetic mean of a set of numbers x1, x2, ..., xn is typically denoted by , pronounced "x bar". If the
data set were based on a series of observations obtained by sampling from a statistical population, the arithmetic
mean is termed the sample mean (denoted ) to distinguish it from the population mean (denoted or ).[2]

For a finite population, the population mean of a property is equal to the arithmetic mean of the given property
while considering every member of the population. For example, the population mean height is equal to the sum of
the heights of every individual divided by the total number of individuals. The sample mean may differ from the
population mean, especially for small samples. The law of large numbers dictates that the larger the size of the
sample, the more likely it is that the sample mean will be close to the population mean.[3]

Outside of probability and statistics, a wide range of other notions of "mean" are often used in geometry and
analysis; examples are given below.

Types of mean

Pythagorean means

Arithmetic mean (AM)

The arithmetic mean (or simply "mean") of a sample is the sum the sampled values divided by the
number of items in the sample:

For example, the arithmetic mean of five values: 4, 36, 45, 50, 75 is
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Comparison of the arithmetic mean, median and
mode of two skewed (log-normal) distributions.

The mean may often be confused with the median, mode or range. The
mean is the arithmetic average of a set of values, or distribution;
however, for skewed distributions, the mean is not necessarily the
same as the middle value (median), or the most likely (mode). For
example, mean income is skewed upwards by a small number of
people with very large incomes, so that the majority have an income
lower than the mean. By contrast, the median income is the level at
which half the population is below and half is above. The mode income
is the most likely income, and favors the larger number of people with
lower incomes. The median or mode are often more intuitive measures
of such data.

Nevertheless, many skewed distributions are best described by their mean – such as the exponential and Poisson
distributions.

Geometric mean (GM)

The geometric mean is an average that is useful for sets of positive numbers that are interpreted according to their
product and not their sum (as is the case with the arithmetic mean) e.g. rates of growth.

For example, the geometric mean of five values: 4, 36, 45, 50, 75 is:

Harmonic mean (HM)

The harmonic mean is an average which is useful for sets of numbers which are defined in relation to some unit, for
example speed (distance per unit of time).

For example, the harmonic mean of the five values: 4, 36, 45, 50, 75 is

Relationship between AM, GM, and HM

AM, GM, and HM satisfy these inequalities:

Equality holds only when all the elements of the given sample are equal.

Generalized means

Power mean

The generalized mean, also known as the power mean or Hölder mean, is an abstraction of the quadratic, arithmetic,
geometric and harmonic means. It is defined for a set of n positive numbers xi by
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By choosing different values for the parameter m, the following types of means are obtained:

maximum

quadratic mean

arithmetic mean

geometric mean

harmonic mean

minimum

ƒ-mean

This can be generalized further as the generalized f-mean

and again a suitable choice of an invertible ƒ will give

arithmetic mean,

harmonic mean,

power mean,

geometric mean.

Weighted arithmetic mean
The weighted arithmetic mean (or weighted average) is used if one wants to combine average values from samples
of the same population with different sample sizes:

The weights represent the sizes of the different samples. In other applications they represent a measure for the
reliability of the influence upon the mean by the respective values.

Truncated mean
Sometimes a set of numbers might contain outliers, i.e., data values which are much lower or much higher than the
others. Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves
discarding given parts of the data at the top or the bottom end, typically an equal amount at each end, and then taking
the arithmetic mean of the remaining data. The number of values removed is indicated as a percentage of total
number of values.
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Interquartile mean
The interquartile mean is a specific example of a truncated mean. It is simply the arithmetic mean after removing the
lowest and the highest quarter of values.

assuming the values have been ordered, so is simply a specific example of a weighted mean for a specific set of
weights.

Mean of a function
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of
the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by

Recall that a defining property of the average value of finitely many numbers is that
. In other words, is the constant value which when added to itself times equals

the result of adding the terms of . By analogy, a defining property of the average value of a function over
the interval is that

In other words, is the constant value which when integrated over equals the result of integrating 
over . But by the second fundamental theorem of calculus, the integral of a constant is just

See also the first mean value theorem for integration, which guarantees that if is continuous then there exists a
point such that

The point is called the mean value of on . So we write and rearrange the preceding
equation to get the above definition.
In several variables, the mean over a relatively compact domain U in a Euclidean space is defined by

This generalizes the arithmetic mean. On the other hand, it is also possible to generalize the geometric mean to
functions by defining the geometric mean of f to be

More generally, in measure theory and probability theory, either sort of mean plays an important role. In this context,
Jensen's inequality places sharp estimates on the relationship between these two different notions of the mean of a
function.
There is also a harmonic average of functions and a quadratic average (or root mean square) of functions.
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Mean of a probability distribution
See expected value.

Mean of angles
Sometimes the usual calculations of means fail on cyclical quantities such as angles, times of day, and other
situations where modular arithmetic is used. For those quantities it might be appropriate to use a mean of circular
quantities to take account of the modular values, or to adjust the values before calculating the mean.

Fréchet mean
The Fréchet mean gives a manner for determining the "center" of a mass distribution on a surface or, more generally,
Riemannian manifold. Unlike many other means, the Fréchet mean is defined on a space whose elements cannot
necessarily be added together or multiplied by scalars. It is sometimes also known as the Karcher mean (named
after Hermann Karcher).

Other means
•• Arithmetic-geometric mean
•• Arithmetic-harmonic mean
•• Cesàro mean
•• Chisini mean
•• Contraharmonic mean
•• Distance-weighted estimator
•• Elementary symmetric mean
•• Geometric-harmonic mean
•• Heinz mean
•• Heronian mean
•• Identric mean
•• Lehmer mean
•• Logarithmic mean
•• Median
•• Moving average
•• Root mean square
• Rényi's entropy (a generalized f-mean)
•• Stolarsky mean
•• Weighted geometric mean
•• Weighted harmonic mean

Distribution of the population mean

Using the sample mean
The arithmetic mean of a population, or population mean, is denoted μ. The sample mean (the arithmetic mean of a
sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is
equal to the population mean (that is, it is an unbiased estimator). The sample mean is a random variable, not a
constant, since its calculated value will randomly differ depending on which members of the population are sampled,
and consequently it will have its own distribution. For a random sample of n observations from a normally
distributed population, the sample mean distribution is normally distributed with mean and variance as follows:
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Often, since the population variance is an unknown parameter, it is estimated by the mean sum of squares; when this
estimated value is used, the distribution of the sample mean is no longer a normal distribution but rather a Student's t
distribution with n − 1 degrees of freedom.
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Median
In statistics and probability theory, the median is the numerical value separating the higher half of a data sample, a
population, or a probability distribution, from the lower half. The median of a finite list of numbers can be found by
arranging all the observations from lowest value to highest value and picking the middle one (e.g., the median of {3,
3, 5, 9, 11} is 5). If there is an even number of observations, then there is no single middle value; the median is then
usually defined to be the mean of the two middle values [1] (the median of {3, 5, 7, 9} is (5 + 7) / 2 = 6), which
corresponds to interpreting the median as the fully trimmed mid-range. The median is of central importance in robust
statistics, as it is the most resistant statistic, having a breakdown point of 50%: so long as no more than half the data
is contaminated, the median will not give an arbitrarily large result. A median is only defined on ordered
one-dimensional data, and is independent of any distance metric. A geometric median, on the other hand, is defined
in any number of dimensions.
In a sample of data, or a finite population, there may be no member of the sample whose value is identical to the
median (in the case of an even sample size); if there is such a member, there may be more than one so that the
median may not uniquely identify a sample member. Nonetheless, the value of the median is uniquely determined
with the usual definition. A related concept, in which the outcome is forced to correspond to a member of the
sample, is the medoid. At most, half the population have values strictly less than the median, and, at most, half have
values strictly greater than the median. If each group contains less than half the population, then some of the
population is exactly equal to the median. For example, if a < b < c, then the median of the list {a, b, c} is b, and, if
a < b < c < d, then the median of the list {a, b, c, d} is the mean of b and c; i.e., it is (b + c)/2.
The median can be used as a measure of location when a distribution is skewed, when end-values are not known, or
when one requires reduced importance to be attached to outliers, e.g., because they may be measurement errors.
In terms of notation, some authors represent the median of a variable x either as or as sometimes also M.
There is no widely accepted standard notation for the median, so the use of these or other symbols for the median
needs to be explicitly defined when they are introduced.
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The median is the 2nd quartile, 5th decile, and 50th percentile.

Measures of location and dispersion
The median is one of a number of ways of summarising the typical values associated with members of a statistical
population; thus, it is a possible location parameter.
When the median is used as a location parameter in descriptive statistics, there are several choices for a measure of
variability: the range, the interquartile range, the mean absolute deviation, and the median absolute deviation. Since
the median is the same as the second quartile, its calculation is illustrated in the article on quartiles.
For practical purposes, different measures of location and dispersion are often compared on the basis of how well the
corresponding population values can be estimated from a sample of data. The median, estimated using the sample
median, has good properties in this regard. While it is not usually optimal if a given population distribution is
assumed, its properties are always reasonably good. For example, a comparison of the efficiency of candidate
estimators shows that the sample mean is more statistically efficient than the sample median when data are
uncontaminated by data from heavy-tailed distributions or from mixtures of distributions, but less efficient
otherwise, and that the efficiency of the sample median is higher than that for a wide range of distributions. More
specifically, the median has a 64% efficiency compared to the minimum-variance mean (for large normal samples),
which is to say the variance of the median will be ~50% greater than the variance of the mean—see Efficiency
(statistics)#Asymptotic efficiency and references therein.

Medians of probability distributions
For any probability distribution on the real line R with cumulative distribution function F, regardless of whether it is
any kind of continuous probability distribution, in particular an absolutely continuous distribution (which has a
probability density function), or a discrete probability distribution, a median is by definition any real number m that
satisfies the inequalities

or, equivalently, the inequalities

in which a Lebesgue–Stieltjes integral is used. For an absolutely continuous probability distribution with probability
density function ƒ, the median satisfies

Any probability distribution on R has at least one median, but there may be more than one median. Where exactly
one median exists, statisticians speak of "the median" correctly; even when the median is not unique, some
statisticians speak of "the median" informally.
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Medians of particular distributions
The medians of certain types of distributions can be easily calculated from their parameters:
•• The median of a symmetric distribution with mean μ is μ.

• The median of a normal distribution with mean μ and variance σ2 is μ. In fact, for a normal distribution, mean
= median = mode.

• The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean.
• The median of a Cauchy distribution with location parameter x0 and scale parameter y is x0, the location

parameter.
• The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate

parameter: λ−1ln 2.
• The median of a Weibull distribution with shape parameter k and scale parameter λ is λ(ln 2)1/k.

Medians in descriptive statistics

Comparison of mean, median and mode of two log-normal distributions with
different skewness.

The median is used primarily for skewed
distributions, which it summarizes
differently than the arithmetic mean.
Consider the multiset { 1, 2, 2, 2, 3, 14 }.
The median is 2 in this case, (as is the
mode), and it might be seen as a better
indication of central tendency (less
susceptible to the exceptionally large value
in data) than the arithmetic mean of 4.

Calculation of medians is a popular
technique in summary statistics and
summarizing statistical data, since it is
simple to understand and easy to calculate,
while also giving a measure that is more
robust in the presence of outlier values than
is the mean.

Medians for populations

An optimality property

The mean absolute error of a real variable c with respect to the random variable X is

Provided that the probability distribution of X is such that the above expectation exists, then m is a median of X if
and only if m is a minimizer of the mean absolute error with respect to X. In particular, m is a sample median if and
only if m minimizes the arithmetic mean of the absolute deviations.
See also k-medians clustering.
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Unimodal distributions

It can be shown for a unimodal distribution that the median and the mean lie within (3/5)1/2 ≈ 0.7746
standard deviations of each other.[2] In symbols,

where |.| is the absolute value.
A similar relation holds between the median and the mode: they lie within 31/2 ≈ 1.732 standard deviations of each
other:

An inequality relating means and medians
If the distribution has finite variance, then the distance between the median and the mean is bounded by one standard
deviation.
This bound was proved by Mallows, who used Jensen's inequality twice, as follows. We have

The first and third inequalities come from Jensen's inequality applied to the absolute-value function and the square
function, which are each convex. The second inequality comes from the fact that a median minimizes the absolute
deviation function

This proof can easily be generalized to obtain a multivariate version of the inequality, as follows:

where m is a spatial median, that is, a minimizer of the function The spatial median is unique
when the data-set's dimension is two or more. An alternative proof uses the one-sided Chebyshev inequality; it
appears in an inequality on location and scale parameters.

Jensen's inequality for medians
Jensen's inequality states that for any random variable x with a finite expectation E(x) and for any convex function f

It has been shown that if x is a real variable with a unique median m and f is a C function then

A C function is a real valued function, defined on the set of real numbers R, with the property that for any real t

is a closed interval, a singleton or an empty set.
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Medians for samples

The sample median

Efficient computation of the sample median

Even though comparison-sorting n items requires Ω(n log n) operations, selection algorithms can compute the
kth-smallest of n items with only Θ(n) operations. This includes the median, which is the $n/2$th order statistic (or
for an odd number of samples, the average of the two middle order statistics).

Easy explanation of the sample median

In individual series (if number of observation is very low) first one must arrange all the observations in ascending
order. Then count(n) is the total number of observation in given data.
If n is odd then Median (M) = value of ((n + 1)/2)th item term.
If n is even then Median (M) = value of [((n)/2)th item term + ((n)/2 + 1)th item term ]/2
For an odd number of values
As an example, we will calculate the sample median for the following set of observations: 1, 5, 2, 8, 7.
Start by sorting the values: 1, 2, 5, 7, 8.
In this case, the median is 5 since it is the middle observation in the ordered list.
The median is the ((n + 1)/2)th item, where n is the number of values. For example, for the list {1, 2, 5, 7, 8}, we
have n = 5, so the median is the ((5 + 1)/2)th item.

median = (6/2)th item
median = 3rd item
median = 5

For an even number of values
As an example, we will calculate the sample median for the following set of observations: 1, 6, 2, 8, 7, 2.
Start by sorting the values: 1, 2, 2, 6, 7, 8.
In this case, the arithmetic mean of the two middlemost terms is (2 + 6)/2 = 4. Therefore, the median is 4 since it is
the arithmetic mean of the middle observations in the ordered list.
We also use this formula MEDIAN = {(n + 1 )/2}th item . n = number of values
As above example 1, 2, 2, 6, 7, 8 n = 6 Median = {(6 + 1)/2}th item = 3.5th item. In this case, the median is average
of the 3rd number and the next one (the fourth number). The median is (2 + 6)/2 which is 4.

Variance

The distribution of both the sample mean and the sample median were determined by Laplace. The distribution of
the sample median from a population with a density function is asymptotically normal with mean and
variance

where is the median value of distribution and is the sample size. In practice this may be difficult to estimate
as the density function is usually unknown.
These results have also been extended. It is now known that for the -th quartile that the distribution of the sample

-th quartile is distributed normally around the -th quartile with variance equal to
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where is the value of the distribution at the -th quartile.
Estimation of variance from sample data

The value of —the asymptotic value of where is the population median—has been

studied by several authors. The standard 'delete one' jackknife method produces inconsistent results. An
alternative—the 'delete k' method—where grows with the sample size has been shown to be asymptotically
consistent. This method may be computationally expensive for large data sets. A bootstrap estimate is known to be
consistent, but converges very slowly (order of ). Other methods have been proposed but their behavior may
differ between large and small samples.
Efficiency
The efficiency of the sample median, measured as the ratio of the variance of the mean to the variance of the median,
depends on the sample size and on the underlying population distribution. For a sample of size from
the normal distribution, the ratio is

For large samples (as tends to infinity) this ratio tends to 

Other estimators
For univariate distributions that are symmetric about one median, the Hodges–Lehmann estimator is a robust and
highly efficient estimator of the population median.
If data are represented by a statistical model specifying a particular family of probability distributions, then estimates
of the median can be obtained by fitting that family of probability distributions to the data and calculating the
theoretical median of the fitted distribution.[citation needed] Pareto interpolation is an application of this when the
population is assumed to have a Pareto distribution.

Coefficient of dispersion
The coefficient of dispersion (CD) is defined as the ratio of the average absolute deviation from the median to the
median of the data.[3] It is a statistical measure used by the states of Iowa, New York and South Dakota in estimating
dues taxes.[4][5][6] In symbols

where n is the sample size, m is the sample median and x is a variate. The sum is taken over the whole sample.
Confidence intervals for a two sample test where the sample sizes are large have been derived by Bonett and Seier
This test assumes that both samples have the same median but differ in the dispersion around it. The confidence
interval (CI) is bounded inferiorly by

where tj is the mean absolute deviation of the jth sample, var() is the variance and zα is the value from the normal
distribution for the chosen value of α: for α = 0.05, zα = 1.96. The following formulae are used in the derivation of
these confidence intervals
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where r is the Pearson correlation coefficient between the squared deviation scores

and 
a and b here are constants equal to 1 and 2, x is a variate and s is the standard deviation of the sample.

Multivariate median
Previously, this article discussed the concept of a univariate median for a one-dimensional object (population,
sample). When the dimension is two or higher, there are multiple concepts that extend the definition of the univariate
median; each such multivariate median agrees with the univariate median when the dimension is exactly one. In
higher dimensions, however, there are several multivariate medians.

Marginal median
The marginal median is defined for vectors defined with respect to a fixed set of coordinates. A marginal median is
defined to be the vector whose components are univariate medians. The marginal median is easy to compute, and its
properties were studied by Puri and Sen.[7]

Spatial median (L1 median)
In a normed vector space of dimension two or greater, the "spatial median" minimizes the expected distance

where X and a are vectors, if this expectation has a finite minimum; another definition is better suited for general
probability-distributions. The spatial median is unique when the data-set's dimension is two or more. It is a robust
and highly efficient estimator of the population spatial-median (also called the "L1 median").Wikipedia:Please
clarify

Other multivariate medians
An alternative to the spatial median is defined in a similar way, but based on a different loss function, and is called
the Geometric median.[citation needed] The centerpoint is another generalization to higher dimensions that does not
relate to a particular metric.

Other median-related concepts

Pseudo-median
For univariate distributions that are symmetric about one median, the Hodges–Lehmann estimator is a robust and
highly efficient estimator of the population median; for non-symmetric distributions, the Hodges–Lehmann estimator
is a robust and highly efficient estimator of the population pseudo-median, which is the median of a symmetrized
distribution and which is close to the population median.[citation needed] The Hodges–Lehmann estimator has been
generalized to multivariate distributions.
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Variants of regression
The Theil–Sen estimator is a method for robust linear regression based on finding medians of slopes.[citation needed]

Median filter
In the context of image processing of monochrome raster images there is a type of noise, known as the salt and
pepper noise, when each pixel independently becomes black (with some small probability) or white (with some small
probability), and is unchanged otherwise (with the probability close to 1). An image constructed of median values of
neighborhoods (like 3×3 square) can effectively reduce noise in this case.[citation needed]

Cluster analysis
In cluster analysis, the k-medians clustering algorithm provides a way of defining clusters, in which the criterion of
maximising the distance between cluster-means that is used in k-means clustering, is replaced by maximising the
distance between cluster-medians.

Median-Median Line
This is a method of robust regression. The idea dates back to Wald in 1940 who suggested dividing a set of bivariate
data into two halves depending on the value of the independent parameter : a left half with values less than the
median and a right half with values greater than the median. He suggested taking the means of the dependent and
independent variables of the left and the right halves and estimating the slope of the line joining these two points.
The line could then be adjusted to fit the majority of the points in the data set.
Nair and Shrivastava in 1942 suggested a similar idea but instead advocated dividing the sample into three equal
parts before calculating the means of the subsamples. Brown and Mood in 1951 proposed the idea of using the
medians of two subsamples rather the means. Tukey combined these ideas and recommended dividing the sample
into three equal size subsamples and estimating the line based on the medians of the subsamples.

Median-unbiased estimators
Any mean-unbiased estimator minimizes the risk (expected loss) with respect to the squared-error loss function, as
observed by Gauss. A median-unbiased estimator minimizes the risk with respect to the absolute-deviation loss
function, as observed by Laplace. Other loss functions are used in statistical theory, particularly in robust statistics.
The theory of median-unbiased estimators was revived by George W. Brown [8] in 1947:

An estimate of a one-dimensional parameter θ will be said to be median-unbiased if, for fixed θ, the
median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often
as it overestimates. This requirement seems for most purposes to accomplish as much as the
mean-unbiased requirement and has the additional property that it is invariant under one-to-one
transformation. [page 584]

Further properties of median-unbiased estimators have been reported. In particular, median-unbiased estimators exist
in cases where mean-unbiased and maximum-likelihood estimators do not exist. Median-unbiased estimators are
invariant under one-to-one transformations.
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History
The idea of the median originated[citation needed] in Edward Wright's book on navigation (Certaine Errors in
Navigation) in 1599 in a section concerning the determination of location with a compass. Wright felt that this value
was the most likely to be the correct value in a series of observations.
In 1757, Roger Joseph Boscovich developed a regression method based on the L1 norm and therefore implicitly on
the median.
The distribution of both the sample mean and the sample median were determined by Laplace in the early 1800s.[9]

Antoine Augustin Cournot in 1843 was the first[citation needed] to use the term median (valeur médiane) for the value
that divides a probability distribution into two equal halves. Gustav Theodor Fechner used the median
(Centralwerth) in sociological and psychological phenomena.[10] It had earlier been used only in astronomy and
related fields. Gustav Fechner popularized the median into the formal analysis of data, although it had been used
previously by Laplace.
Francis Galton used the English term median in 1881,[11] having earlier used the terms middle-most value in 1869
and the medium in 1880.[citation needed]
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This article incorporates material from Median of a distribution on PlanetMath, which is licensed under the
Creative Commons Attribution/Share-Alike License.

Mode (statistics)
The mode is the value that appears most often in a set of data. The mode of a discrete probability distribution is the
value x at which its probability mass function takes its maximum value. In other words, it is the value that is most
likely to be sampled. The mode of a continuous probability distribution is the value x at which its probability density
function has its maximum value, so, informally speaking, the mode is at the peak.
Like the statistical mean and median, the mode is a way of expressing, in a single number, important information
about a random variable or a population. The numerical value of the mode is the same as that of the mean and
median in a normal distribution, and it may be very different in highly skewed distributions.
The mode is not necessarily unique, since the probability mass function or probability density function may take the
same maximum value at several points x1, x2, etc. The most extreme case occurs in uniform distributions, where all
values occur equally frequently.
The above definition tells us that only global maxima are modes. Slightly confusingly, when a probability density
function has multiple local maxima it is common to refer to all of the local maxima as modes of the distribution.
Such a continuous distribution is called multimodal (as opposed to unimodal).
In symmetric unimodal distributions, such as the normal (or Gaussian) distribution (the distribution whose density
function, when graphed, gives the famous "bell curve"), the mean (if defined), median and mode all coincide. For
samples, if it is known that they are drawn from a symmetric distribution, the sample mean can be used as an
estimate of the population mode.

Mode of a sample
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample
[1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] the mode is not unique - the dataset may be
said to be bimodal, while a set with more than two modes may be described as multimodal.
For a sample from a continuous distribution, such as [0.935..., 1.211..., 2.430..., 3.668..., 3.874...], the concept is
unusable in its raw form, since no two values will be exactly the same, so each value will occur precisely once. In
order to estimate the mode, the usual practice is to discretize the data by assigning frequency values to intervals of
equal distance, as for making a histogram, effectively replacing the values by the midpoints of the intervals they are
assigned to. The mode is then the value where the histogram reaches its peak. For small or middle-sized samples the
outcome of this procedure is sensitive to the choice of interval width if chosen too narrow or too wide; typically one
should have a sizable fraction of the data concentrated in a relatively small number of intervals (5 to 10), while the
fraction of the data falling outside these intervals is also sizable. An alternate approach is kernel density estimation,
which essentially blurs point samples to produce a continuous estimate of the probability density function which can
provide an estimate of the mode.
The following MATLAB (or Octave) code example computes the mode of a sample:

X = sort(x);

indices   =  find(diff([X; realmax]) > 0); % indices where repeated 

values change

[modeL,i] =  max (diff([0; indices]));     % longest persistence length

 of repeated values

mode      =  X(indices(i));
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The algorithm requires as a first step to sort the sample in ascending order. It then computes the discrete derivative of
the sorted list, and finds the indices where this derivative is positive. Next it computes the discrete derivative of this
set of indices, locating the maximum of this derivative of indices, and finally evaluates the sorted sample at the point
where that maximum occurs, which corresponds to the last member of the stretch of repeated values.

Comparison of mean, median and mode

Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Type Description Example Result

Arithmetic mean Sum of values of a data set divided by number of values: (1+2+2+3+4+7+9) / 7 4

Median Middle value separating the greater and lesser halves of a data set 1, 2, 2, 3, 4, 7, 9 3

Mode Most frequent value in a data set 1, 2, 2, 3, 4, 7, 9 2

Use
Unlike mean and median, the concept of mode also makes sense for "nominal data" (i.e., not consisting of numerical
values in the case of mean, or even of ordered values in the case of median). For example, taking a sample of Korean
family names, one might find that "Kim" occurs more often than any other name. Then "Kim" would be the mode of
the sample. In any voting system where a plurality determines victory, a single modal value determines the victor,
while a multi-modal outcome would require some tie-breaking procedure to take place.
Unlike median, the concept of mean makes sense for any random variable assuming values from a vector space,
including the real numbers (a one-dimensional vector space) and the integers (which can be considered embedded in
the reals). For example, a distribution of points in the plane will typically have a mean and a mode, but the concept
of median does not apply. The median makes sense when there is a linear order on the possible values.
Generalizations of the concept of median to higher-dimensional spaces are the geometric median and the centerpoint.

Uniqueness and definedness
For the remainder, the assumption is that we have (a sample of) a real-valued random variable.

For some probability distributions, the expected value may be infinite or undefined, but if defined, it is unique. The
mean of a (finite) sample is always defined. The median is the value such that the fractions not exceeding it and not
falling below it are both at least 1/2. It is not necessarily unique, but never infinite or totally undefined. For a data
sample it is the "halfway" value when the list of values is ordered in increasing value, where usually for a list of even
length the numerical average is taken of the two values closest to "halfway". Finally, as said before, the mode is not
necessarily unique. Certain pathological distributions (for example, the Cantor distribution) have no defined mode at
all.[citation needed] For a finite data sample, the mode is one (or more) of the values in the sample.

Properties
Assuming definedness, and for simplicity uniqueness, the following are some of the most interesting properties.
• All three measures have the following property: If the random variable (or each value from the sample) is

subjected to the linear or affine transformation which replaces X by aX+b, so are the mean, median and mode.
• However, if there is an arbitrary monotonic transformation, only the median follows; for example, if X is replaced

by exp(X), the median changes from m to exp(m) but the mean and mode won't.[citation needed]

• Except for extremely small samples, the mode is insensitive to "outliers" (such as occasional, rare, false
experimental readings). The median is also very robust in the presence of outliers, while the mean is rather
sensitive.
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• In continuous unimodal distributions the median lies, as a rule of thumb, between the mean and the mode, about
one third of the way going from mean to mode. In a formula, median ≈ (2 × mean + mode)/3. This rule, due to
Karl Pearson, often applies to slightly non-symmetric distributions that resemble a normal distribution, but it is
not always true and in general the three statistics can appear in any order.

• For unimodal distributions, the mode is within standard deviations of the mean, and the root mean square
deviation about the mode is between the standard deviation and twice the standard deviation.

Example for a skewed distribution
An example of a skewed distribution is personal wealth: Few people are very rich, but among those some are
extremely rich. However, many are rather poor.

Comparison of mean, median and mode of two log-normal distributions with
different skewness.

A well-known class of distributions that can
be arbitrarily skewed is given by the
log-normal distribution. It is obtained by
transforming a random variable X having a
normal distribution into random variable Y =
eX. Then the logarithm of random variable Y
is normally distributed, hence the name.

Taking the mean μ of X to be 0, the median
of Y will be 1, independent of the standard
deviation σ of X. This is so because X has a
symmetric distribution, so its median is also
0. The transformation from X to Y is
monotonic, and so we find the median e0 = 1
for Y.

When X has standard deviation σ = 0.25, the
distribution of Y is weakly skewed. Using
formulas for the log-normal distribution, we find:

Indeed, the median is about one third on the way from mean to mode.
When X has a larger standard deviation, σ = 1, the distribution of Y is strongly skewed. Now

Here, Pearson's rule of thumb fails.
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van Zwet condition
Van Zwet derived an inequality which provides sufficient conditions for this inequality to hold.[1] The inequality

Mode ≤ Median ≤ Mean
holds if

F( Median - x ) + F( Median + x ) ≥ 1
for all x where F() is the cumulative distribution function of the distribution.

Unimodal distributions
The difference between the mean and the mode in a unimodal continuous distribution is bounded by the standard
deviation multiplied by the square root of 3.[2] In symbols

where || is the absolute value. Incidentally this formula is also the Pearson mode or first skewness coefficient,.
The difference between the mode and the median has the same bound. In symbols

Confidence interval for the mode with a single data point
It is a common but false belief that from a single observation x we can not gain information about the variability in
the population and that consequently that finite length confidence intervals for mean and/or variance are impossible
even in principle.
It is possible for an unknown unimodal distribution to estimate a confidence interval for the mode with a sample size
of 1. This was first shown by Abbot and Rosenblatt and extended by Blachman and Machol. This confidence interval
can be sharpened if the distribution can be assumed to be symmetrical. It is further possible to sharpen this interval if
the distribution is normally distributed.
Let the confidence interval be 1 - α. Then the confidence intervals for the general, symmetric and normally
distributed variates respectively are

where X is the variate, θ is the mode and || is the absolute value.
These estimates are conservative. The confidence intervals for the mode at the 90% level given by these estimators
are X ± 19 | X - θ |, X ± 9 | X - θ | and X ± 5.84 | X - θ | for the general, symmetric and normally distributed variates
respectively. The 95% confidence interval for a normally distributed variate is given by X ± 10.7 | X - θ |. It may be
worth noting that the mean and the mode coincide if the variates are normally distributed.
The 95% bound for a normally distributed variate has been improved and is now known to be X ± 9.68 | X - θ | The
bound for a 99% confidence interval is X ± 48.39 | X - θ'|

Note
Machol has shown that that given a known density symmetrical about 0 that given a single sample value (x) that the
90% confidence intervals of population mean are[3]
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where ν is the population median.
If the precise form of the distribution is not known but it is known to be symmetrical about zero then we have

where X is the variate, μ is the population mean and a and k are arbitrary real numbers.
It is also possible to estimate a confidence interval for the standard deviation from a single observation if the
distribution is symmetrical about 0. For a normal distribution the with an unknown variance and a single data point
(X) the 90%, 95% and 99% confidence intervals for the standard deviation are [ 0, 8|X| ], [ 0, 17|X| ] and [ 0, 70|X| ].
These intervals may be shorted if the mean is known to be bounded by a multiple of the standard deviation.
If the distribution is known to be normal then it is possible to estimate a confidence interval for both the mean and
variance from a simple value. The 90% confidence intervals are

The confidence intervals can be estimated for any chosen range.
This method is not limited to the normal distribution but can be used with any known distribution.

Statistical tests
These estimators have been used to create hypothesis tests for simple samples from normal or symmetrical unimodal
distributions. Let the distribution have an assumed mean ( μ0 ). The null hypothesis is that the assumed mean of the
distribution lies within the confidence interval of the sample mean ( m ). The null hypothesis is accepted if

where x is the value of the sample and k is a constant. The null hypothesis is rejected if

The value of k depends on the choice of confidence interval and the nature of the assumed distribution.
If the distribution is assumed or is known to be normal then the values of k for the 50%, 66.6%, 75%, 80%, 90%,
95% and 99% confidence intervals are 0.50, 1.26, 1.80, 2.31, 4.79, 9.66 and 48.39 respectively.
If the distribution is assumed or known to be unimodal and symmetrical but not normal then the values of k for the
50%, 66.6%, 75%, 80%, 90%, 95% and 99% confidence intervals are 0.50, 1.87, 2.91, 3.94, 8.97, 18.99, 99.00
respectively.
To see how this test works we assume or know a priori that the population from which the sample is drawn has a
mean of μ0 and that the population has a symmetrical unimodal distribution - a class that includes the normal
distribution. We wish to know if the mean estimated from the sample is representative of the population at a pre
chosen level of confidence.
Assume that the distribution is normal and let the confidence interval be 95%. Then k = 9.66.
Assuming that the sample is representative of the population, the sample mean ( m ) will then lie within the range
determined from the formula:

If subsequent sampling shows that the sample mean lies outside these parameters the sample mean is to be
considered to differ significantly from the population mean.
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History
The term mode originates with Karl Pearson in 1895.[4]
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Variance
In probability theory and statistics, variance measures how far a set of numbers is spread out. (A variance of zero
indicates that all the values are identical.) A non-zero variance is always positive: A small variance indicates that the
data points tend to be very close to the mean (expected value) and hence to each other, while a high variance
indicates that the data points are very spread out from the mean and from each other.
The square root of variance is called the standard deviation.
The variance is one of several descriptors of a probability distribution. In particular, the variance is one of the
moments of a distribution. In that context, it forms part of a systematic approach to distinguishing between
probability distributions. While other such approaches have been developed, those based on moments are
advantageous in terms of mathematical and computational simplicity.
The variance is a parameter that describes, in part, either the actual probability distribution of an observed population
of numbers, or the theoretical probability distribution of a sample (a not-fully-observed population) of numbers. In
the latter case, a sample of data from such a distribution can be used to construct an estimate of its variance: in the
simplest cases this estimate can be the sample variance.

Definition
The variance of a random variable X is its second central moment, the expected value of the squared deviation from
the mean μ = E[X]:

This definition encompasses random variables that are discrete, continuous, neither, or mixed. The variance can also
be thought of as the covariance of a random variable with itself:

The variance is also equivalent to the second cumulant of the probability distribution for X. The variance is typically 
designated as Var(X), , or simply σ2 (pronounced "sigma squared"). The expression for the variance can be
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expanded:

A mnemonic for the above expression is "mean of square minus square of mean".

Continuous random variable
If the random variable X is continuous with probability density function f(x), then the variance is given by

where is the expected value,

and where the integrals are definite integrals taken for x ranging over the range of X.
If a continuous distribution does not have an expected value, as is the case for the Cauchy distribution, it does not
have a variance either. Many other distributions for which the expected value does exist also do not have a finite
variance because the integral in the variance definition diverges. An example is a Pareto distribution whose index k
satisfies 1 < k ≤ 2.

Discrete random variable
If the random variable X is discrete with probability mass function x1 ↦ p1, ..., xn ↦ pn, then

where is the expected value, i.e.

.

(When such a discrete weighted variance is specified by weights whose sum is not 1, then one divides by the sum of
the weights.)
The variance of a set of n equally likely values can be written as

The variance of a set of n equally likely values can be equivalently expressed, without directly referring to the mean,
in terms of squared deviations of all points from each other:
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Examples

Normal distribution
The normal distribution with parameters μ and σ is a continuous distribution whose probability density function is
given by:

It has mean μ and variance equal to:

The role of the normal distribution in the central limit theorem is in part responsible for the prevalence of the
variance in probability and statistics.

Exponential distribution
The exponential distribution with parameter λ is a continuous distribution whose support is the semi-infinite interval
[0,∞). Its probability density function is given by:

and it has expected value μ = λ−1. The variance is equal to:

So for an exponentially distributed random variable σ2 = μ2.

Poisson distribution
The Poisson distribution with parameter λ is a discrete distribution for k = 0, 1, 2, ... Its probability mass function is
given by:

and it has expected value μ = λ. The variance is equal to:

So for a Poisson-distributed random variable σ2 = μ.

Binomial distribution
The binomial distribution with parameters n and p is a discrete distribution for k = 0, 1, 2, ..., n. Its probability mass
function is given by:

and it has expected value μ = np. The variance is equal to:
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Coin toss

The binomial distribution with describes the probability of getting heads in tosses. Thus the
expected value of the number of heads is , and the variance is .

Fair die
A six-sided fair die can be modelled with a discrete random variable with outcomes 1 through 6, each with equal
probability . The expected value is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. Therefore the variance can be computed to be:

The general formula for the variance of the outcome X of a die of n sides is:

Properties

Basic properties
Variance is non-negative because the squares are positive or zero.

The variance of a constant random variable is zero, and if the variance of a variable in a data set is 0, then all the
entries have the same value.

Variance is invariant with respect to changes in a location parameter. That is, if a constant is added to all values of
the variable, the variance is unchanged.

If all values are scaled by a constant, the variance is scaled by the square of that constant.

The variance of a sum of two random variables is given by:

where Cov(., .) is the covariance. In general we have for the sum of random variables :

These results lead to the variance of a linear combination as:
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If the random variables are such that

they are said to be uncorrelated. It follows immediately from the expression given earlier that if the random variables
are uncorrelated, then the variance of their sum is equal to the sum of their variances, or, expressed

symbolically:

Since independent random variables are always uncorrelated, the equation above holds in particular when the
random variables are independent. Thus independence is sufficient but not necessary for the variance
of the sum to equal the sum of the variances.

Sum of uncorrelated variables (Bienaymé formula)
One reason for the use of the variance in preference to other measures of dispersion is that the variance of the sum
(or the difference) of uncorrelated random variables is the sum of their variances:

This statement is called the Bienaymé formula[1] and was discovered in 1853.[citation needed] It is often made with the
stronger condition that the variables are independent, but uncorrelatedness suffices. So if all the variables have the
same variance σ2, then, since division by n is a linear transformation, this formula immediately implies that the
variance of their mean is

That is, the variance of the mean decreases when n increases. This formula for the variance of the mean is used in the
definition of the standard error of the sample mean, which is used in the central limit theorem.
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Product of independent variables
If two variables X and Y are independent, the variance of their product is given by[2][3]

Sum of correlated variables
In general, if the variables are correlated, then the variance of their sum is the sum of their covariances:

(Note: The second equality comes from the fact that Cov(Xi,Xi) = Var(Xi).)
Here Cov is the covariance, which is zero for independent random variables (if it exists). The formula states that the
variance of a sum is equal to the sum of all elements in the covariance matrix of the components. This formula is
used in the theory of Cronbach's alpha in classical test theory.
So if the variables have equal variance σ2 and the average correlation of distinct variables is ρ, then the variance of
their mean is

This implies that the variance of the mean increases with the average of the correlations. Moreover, if the variables
have unit variance, for example if they are standardized, then this simplifies to

This formula is used in the Spearman–Brown prediction formula of classical test theory. This converges to ρ if n
goes to infinity, provided that the average correlation remains constant or converges too. So for the variance of the
mean of standardized variables with equal correlations or converging average correlation we have

Therefore, the variance of the mean of a large number of standardized variables is approximately equal to their
average correlation. This makes clear that the sample mean of correlated variables does generally not converge to the
population mean, even though the Law of large numbers states that the sample mean will converge for independent
variables.

Weighted sum of variables
The scaling property and the Bienaymé formula, along with this property from the covariance page: Cov(aX, bY) =
ab Cov(X, Y) jointly imply that

This implies that in a weighted sum of variables, the variable with the largest weight will have a disproportionally
large weight in the variance of the total. For example, if X and Y are uncorrelated and the weight of X is two times
the weight of Y, then the weight of the variance of X will be four times the weight of the variance of Y.
The expression above can be extended to a weighted sum of multiple variables:
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Decomposition
The general formula for variance decomposition or the law of total variance is: If and are two random
variables, and the variance of exists, then

Here, is the conditional expectation of given , and is the conditional variance of 
given . (A more intuitive explanation is that given a particular value of , then follows a distribution with
mean and variance . The above formula tells how to find based on the
distributions of these two quantities when is allowed to vary.) This formula is often applied in analysis of
variance, where the corresponding formula is

here refers to the Mean of the Squares. It is also used in linear regression analysis, where the corresponding
formula is

This can also be derived from the additivity of variances, since the total (observed) score is the sum of the predicted
score and the error score, where the latter two are uncorrelated.
Similar decompositions are possible for the sum of squared deviations (sum of squares, ):

Formulae for the variance
A formula often used for deriving the variance of a theoretical distribution is as follows:

This will be useful when it is possible to derive formulae for the expected value and for the expected value of the
square.
This formula is also sometimes used in connection with the sample variance. While useful for hand calculations, it is
not advised for computer calculations as it suffers from catastrophic cancellation if the two components of the
equation are similar in magnitude and floating point arithmetic is used. This is discussed in the article Algorithms for
calculating variance.

Calculation from the CDF
The population variance for a non-negative random variable can be expressed in terms of the cumulative distribution
function F using

where H(u) = 1 − F(u) is the right tail function. This expression can be used to calculate the variance in situations
where the CDF, but not the density, can be conveniently expressed.
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Characteristic property
The second moment of a random variable attains the minimum value when taken around the first moment (i.e.,
mean) of the random variable, i.e. . Conversely, if a continuous function 
satisfies for all random variables X, then it is necessarily of the form

, where a > 0. This also holds in the multidimensional case.

Matrix notation for the variance of a linear combination

Let's define as a column vector of n random variables , and c as a column vector of N scalars
. Therefore is a linear combination of these random variables, where denotes the transpose of

vector . Let also be the variance-covariance matrix of the vector X. The variance of is given by:

Units of measurement
Unlike expected absolute deviation, the variance of a variable has units that are the square of the units of the variable
itself. For example, a variable measured in inches will have a variance measured in square inches. For this reason,
describing data sets via their standard deviation or root mean square deviation is often preferred over using the
variance. In the dice example the standard deviation is √2.9 ≈ 1.7, slightly larger than the expected absolute
deviation of 1.5.
The standard deviation and the expected absolute deviation can both be used as an indicator of the "spread" of a
distribution. The standard deviation is more amenable to algebraic manipulation than the expected absolute
deviation, and, together with variance and its generalization covariance, is used frequently in theoretical statistics;
however the expected absolute deviation tends to be more robust as it is less sensitive to outliers arising from
measurement anomalies or an unduly heavy-tailed distribution.

Approximating the variance of a function
The delta method uses second-order Taylor expansions to approximate the variance of a function of one or more
random variables: see Taylor expansions for the moments of functions of random variables. For example, the
approximate variance of a function of one variable is given by

provided that f is twice differentiable and that the mean and variance of X are finite.

Population variance and sample variance
Real-world distributions such as the distribution of yesterday's rain throughout the day are typically not fully known,
unlike the behavior of perfect dice or an ideal distribution such as the normal distribution, because it is impractical to
account for every raindrop. Instead one estimates the mean and variance of the whole distribution as the computed
mean and variance of a sample of n observations drawn suitably randomly from the whole sample space, in this
example the set of all measurements of yesterday's rainfall in all available rain gauges.
This method of estimation is close to optimal, with the caveat that it underestimates the variance by a factor of
(n − 1) / n. (For example, when n = 1 the variance of a single observation is obviously zero regardless of the true
variance). This gives a bias which should be corrected for when n is small by multiplying by n / (n − 1). If the mean
is determined in some other way than from the same samples used to estimate the variance then this bias does not
arise and the variance can safely be estimated as that of the samples.
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Population variance
In general, the population variance of a finite population of size N with values xi is given by

where

is the population mean. The population variance therefore is the variance of the underlying probability distribution.
In this sense, the concept of population can be extended to continuous random variables with infinite populations.

Sample variance
In many practical situations, the true variance of a population is not known a priori and must be computed somehow.
When dealing with extremely large populations, it is not possible to count every object in the population, so the
computation must be performed on a sample of the population.[4] Sample variance can also be applied to the
estimation of the variance of a continuous distribution from a sample of that distribution.
We take a sample with replacement of n values y1, ..., yn from the population, where n < N, and estimate the variance
on the basis of this sample.[5] Directly taking the variance of the sample gives:

Here, denotes the sample mean:

Since the yi are selected randomly, both and are random variables. Their expected values can be evaluated by
summing over the ensemble of all possible samples {yi} from the population. For this gives:

Hence gives an estimate of the population variance that is biased by a factor of (n-1)/n. For this reason, is
referred to as the biased sample variance. Correcting for this bias yields the unbiased sample variance:

Either estimator may be simply referred to as the sample variance when the version can be determined by context.
The same proof is also applicable for samples taken from a continuous probability distribution.

https://en.wikipedia.org/w/index.php?title=Statistical_population
https://en.wikipedia.org/w/index.php?title=Sample_%28statistics%29
https://en.wikipedia.org/w/index.php?title=Statistical_sample
https://en.wikipedia.org/w/index.php?title=Sample_mean


Variance 29

The use of the term n − 1 is called Bessel's correction, and it is also used in sample covariance and the sample
standard deviation (the square root of variance). The square root is a concave function and thus introduces negative
bias (by Jensen's inequality), which depends on the distribution, and thus the corrected sample standard deviation
(using Bessel's correction) is biased. The unbiased estimation of standard deviation is a technically involved
problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator.
The unbiased sample variance is a U-statistic for the function ƒ(y1, y2) = (y1 − y2)2/2, meaning that it is obtained by
averaging a 2-sample statistic over 2-element subsets of the population.

Distribution of the sample variance

Distribution and cumulative distribution of s2/σ2, for various values of ν = n − 1, when the yi are independent
normally distributed.
Being a function of random variables, the sample variance is itself a random variable, and it is natural to study its
distribution. In the case that yi are independent observations from a normal distribution, Cochran's theorem shows
that s2 follows a scaled chi-squared distribution:[6]

As a direct consequence, it follows that

and[7]

If the yi are independent and identically distributed, but not necessarily normally distributed, then[8]
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where κ is the excess kurtosis of the distribution and μ4 is the fourth moment about the mean.
If the conditions of the law of large numbers hold for the squared observations, s2 is a consistent estimator
of σ2.[citation needed]. One can see indeed that the variance of the estimator tends asymptotically to zero.

Samuelson's inequality
Samuelson's inequality is a result that states bounds on the values that individual observations in a sample can take,
given that the sample mean and (biased) variance have been calculated.[9] Values must lie within the limits

Relations with the harmonic and arithmetic means
It has been shown[10] that for a sample {yi} of real numbers,

where ymax is the maximum of the sample, A is the arithmetic mean, H is the harmonic mean of the sample and is

the (biased) variance of the sample.
This bound has been improved on, and it is known that variance is bounded by

where ymin is the minimum of the sample.[11]

Generalizations
If is a vector-valued random variable, with values in , and thought of as a column vector, then the natural
generalization of variance is , where and is the transpose of , and
so is a row vector. This variance is a positive semi-definite square matrix, commonly referred to as the covariance
matrix.
If is a complex-valued random variable, with values in , then its variance is ,
where is the conjugate transpose of . This variance is also a positive semi-definite square matrix.

Tests of equality of variances
Testing for the equality of two or more variances is difficult. The F test and chi square tests are both adversely
affected by non-normality and are not recommended for this purpose.
Several non parametric tests have been proposed: these include the Barton-David-Ansari-Fruend-Siegel-Tukey test,
the Capon test, Mood test, the Klotz test and the Sukhatme test. The Sukhatme test applies to two variances and
requires that both medians be known and equal to zero. The Mood, Klotz, Capon and
Barton-David-Ansari-Fruend-Siegel-Tukey tests also apply to two variances. They allow the median to be unknown
but do require that the two medians are equal.
The Lehman test is a parametric test of two variances. Of this test there are several variants known. Other tests of the
equality of variances include the Box test, the Box-Anderson test and the Moses test.
Resampling methods, which include the bootstrap and the jackknife, may be used to test the equality of variances.
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History
The term variance was first introduced by Ronald Fisher in his 1918 paper The Correlation Between Relatives on the
Supposition of Mendelian Inheritance:[12]

The great body of available statistics show us that the deviations of a human measurement from its mean
follow very closely the Normal Law of Errors, and, therefore, that the variability may be uniformly
measured by the standard deviation corresponding to the square root of the mean square error. When
there are two independent causes of variability capable of producing in an otherwise uniform population
distributions with standard deviations and , it is found that the distribution, when both causes act
together, has a standard deviation . It is therefore desirable in analysing the causes of

variability to deal with the square of the standard deviation as the measure of variability. We shall term
this quantity the Variance...

Moment of inertia
The variance of a probability distribution is analogous to the moment of inertia in classical mechanics of a
corresponding mass distribution along a line, with respect to rotation about its center of mass.[citation needed] It is
because of this analogy that such things as the variance are called moments of probability distributions.[citation needed]

The covariance matrix is related to the moment of inertia tensor for multivariate distributions. The moment of inertia
of a cloud of n points with a covariance matrix of is given by[citation needed]

This difference between moment of inertia in physics and in statistics is clear for points that are gathered along a
line. Suppose many points are close to the x axis and distributed along it. The covariance matrix might look like

That is, there is the most variance in the x direction. However, physicists would consider this to have a low moment
about the x axis so the moment-of-inertia tensor is

Notes
[1] Loeve, M. (1977) "Probability Theory", Graduate Texts in Mathematics, Volume 45, 4th edition, Springer-Verlag, p. 12.
[2] Goodman, Leo A., "On the exact variance of products," Journal of the American Statistical Association, December 1960, 708–713.
[3] Goodman, Leo A., "The variance of the product of K random variables," Journal of the American Statistical Association, March 1962, 54ff.
[4] Navidi, William (2006) Statistics for Engineers and Scientists, McGraw-Hill, pg 14.
[5] Montgomery, D. C. and Runger, G. C. (1994) Applied statistics and probability for engineers, page 201. John Wiley & Sons New York
[6] Knight K. (2000), Mathematical Statistics, Chapman and Hall, New York. (proposition 2.11)
[7] Casella and Berger (2002) Statistical Inference, Example 7.3.3, p. 331
[8] Neter, Wasserman, and Kutner (1990) Applied Linear Statistical Models, 3rd edition, pp. 622-623
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Standard deviation

A plot of a normal distribution (or bell-shaped curve) where each band has a width of 1
standard deviation – See also: 68–95–99.7 rule

Cumulative probability of a normal distribution
with expected value 0 and standard deviation 1.

In statistics and probability theory, the
standard deviation (represented by
the Greek letter sigma, σ) shows how
much variation or dispersion from the
average exists. A low standard
deviation indicates that the data points
tend to be very close to the mean (also
called expected value); a high standard
deviation indicates that the data points
are spread out over a large range of
values.

The standard deviation of a random
variable, statistical population, data set,
or probability distribution is the square
root of its variance. It is algebraically
simpler though in practice less robust
than the average absolute deviation. A
useful property of the standard
deviation is that, unlike the variance, it
is expressed in the same units as the
data. Note, however, that for
measurements with percentage as the
unit, the standard deviation will have
percentage points as the unit.

In addition to expressing the variability of a population, the standard deviation is commonly used to measure
confidence in statistical conclusions. For example, the margin of error in polling data is determined by calculating
the expected standard deviation in the results if the same poll were to be conducted multiple times. The reported
margin of error is typically about twice the standard deviation – the half-width of a 95 percent confidence interval. In
science, researchers commonly report the standard deviation of experimental data, and only effects that fall much
farther than one standard deviation away from what would have been expected are considered statistically
significant – normal random error or variation in the measurements is in this way distinguished from causal
variation. The standard deviation is also important in finance, where the standard deviation on the rate of return on
an investment is a measure of the volatility of the investment.

When only a sample of data from a population is available, the term standard deviation of the sample or sample
standard deviation can refer to either the above-mentioned quantity as applied to those data or to a modified
quantity that is a better estimate of the population standard deviation (the standard deviation of the entire
population).
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Basic examples
For a finite set of numbers, the standard deviation is found by taking the square root of the average of the squared
differences of the values from their average value. For example, consider a population consisting of the following
eight values:

These eight data points have the mean (average) of 5:

First, calculate the difference of each data point from the mean, and square the result of each:

Next, calculate the mean of these values, and take the square root:

This quantity is the population standard deviation, and is equal to the square root of the variance. This formula is
valid only if the eight values we began with form the complete population. If the values instead were a random
sample drawn from some larger parent population, then we would have divided by 7 (which is n−1) instead of
8 (which is n) in the denominator of the last formula, and then the quantity thus obtained would be called the sample
standard deviation. Dividing by n−1 gives a better estimate of the population standard deviation than dividing by n.
As a slightly more complicated real-life example, the average height for adult men in the United States is about
70 inches, with a standard deviation of around 3 inches. This means that most men (about 68 percent, assuming a
normal distribution) have a height within 3 inches of the mean (67–73 inches)  – one standard deviation – and
almost all men (about 95%) have a height within 6 inches of the mean (64–76 inches) – two standard deviations. If
the standard deviation were zero, then all men would be exactly 70 inches tall. If the standard deviation were
20 inches, then men would have much more variable heights, with a typical range of about 50–90 inches. Three
standard deviations account for 99.7 percent of the sample population being studied, assuming the distribution is
normal (bell-shaped).

Definition of population values
Let X be a random variable with mean value μ:

Here the operator E denotes the average or expected value of X. Then the standard deviation of X is the quantity

(derived using the properties of expected value).
In other words the standard deviation σ (sigma) is the square root of the variance of X; i.e., it is the square root of the
average value of (X − μ)2.
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The standard deviation of a (univariate) probability distribution is the same as that of a random variable having that
distribution. Not all random variables have a standard deviation, since these expected values need not exist. For
example, the standard deviation of a random variable that follows a Cauchy distribution is undefined because its
expected value μ is undefined.

Discrete random variable
In the case where X takes random values from a finite data set x1, x2, ..., xN, with each value having the same
probability, the standard deviation is

or, using summation notation,

If, instead of having equal probabilities, the values have different probabilities, let x1 have probability p1, x2 have
probability p2, ..., xN have probability pN. In this case, the standard deviation will be

Continuous random variable
The standard deviation of a continuous real-valued random variable X with probability density function p(x) is

and where the integrals are definite integrals taken for x ranging over the set of possible values of the random
variable X.
In the case of a parametric family of distributions, the standard deviation can be expressed in terms of the
parameters. For example, in the case of the log-normal distribution with parameters μ and σ2, the standard deviation
is [(exp(σ2) − 1)exp(2μ + σ2)]1/2.

Estimation
One can find the standard deviation of an entire population in cases (such as standardized testing) where every
member of a population is sampled. In cases where that cannot be done, the standard deviation σ is estimated by
examining a random sample taken from the population and computing a statistic of the sample, which is used as an
estimate of the population standard deviation. Such a statistic is called an estimator, and the estimator (or the value
of the estimator, namely the estimate) is called a sample standard deviation, and is denoted by s (possibly with
modifiers). However, unlike in the case of estimating the population mean, for which the sample mean is a simple
estimator with many desirable properties (unbiased, efficient, maximum likelihood), there is no single estimator for
the standard deviation with all these properties, and unbiased estimation of standard deviation is a very technical
involved problem. Most often, the standard deviation is estimated using the corrected sample standard deviation
(using N − 1), defined below, and this is often referred to as the "sample standard deviation", without qualifiers.
However, other estimators are better in other respects: the uncorrected estimator (using N) yields lower mean
squared error, while using N − 1.5 (for the normal distribution) almost completely eliminates bias.
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Uncorrected sample standard deviation
Firstly, the formula for the population standard deviation (of a finite population) can be applied to the sample, using
the size of the sample as the size of the population (though the actual population size from which the sample is
drawn may be much larger). This estimator, denoted by sN, is known as the uncorrected sample standard
deviation, or sometimes the standard deviation of the sample (considered as the entire population), and is defined
as follows:[citation needed]

where are the observed values of the sample items and  is the mean value of these observations,
while the denominator N stands for the size of the sample.
This is a consistent estimator (it converges in probability to the population value as the number of samples goes to
infinity), and is the maximum-likelihood estimate when the population is normally distributed.[citation needed]

However, this is a biased estimator, as the estimates are generally too low. The bias decreases as sample size grows,
dropping off as 1/n, and thus is most significant for small or moderate sample sizes; for the bias is below
1%. Thus for very large sample sizes, the uncorrected sample standard deviation is generally acceptable. This
estimator also has a uniformly smaller mean squared error than the corrected sample standard deviation.

Corrected sample standard deviation
When discussing the bias, to be more precise, the corresponding estimator for the variance, the biased sample
variance:

equivalently the second central moment of the sample (as the mean is the first moment), is a biased estimator of the
variance (it underestimates the population variance). Taking the square root to pass to the standard deviation
introduces further downward bias, by Jensen's inequality, due to the square root being a concave function. The bias
in the variance is easily corrected, but the bias from the square root is more difficult to correct, and depends on the
distribution in question.
An unbiased estimator for the variance is given by applying Bessel's correction, using N − 1 instead of N to yield the
unbiased sample variance, denoted s2:

This estimator is unbiased if the variance exists and the sample values are drawn independently with replacement.
N − 1 corresponds to the number of degrees of freedom in the vector of residuals, 
Taking square roots reintroduces bias, and yields the corrected sample standard deviation, denoted by s:

While s2 is an unbiased estimator for the population variance, s is a biased estimator for the population standard
deviation, though markedly less biased than the uncorrected sample standard deviation. The bias is still significant
for small samples (n less than 10), and also drops off as 1/n as sample size increases. This estimator is commonly
used, and generally known simply as the "sample standard deviation".
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Unbiased sample standard deviation
For unbiased estimation of standard deviation, there is no formula that works across all distributions, unlike for mean
and variance. Instead, s is used as a basis, and is scaled by a correction factor to produce an unbiased estimate. For
the normal distribution, an unbiased estimator is given by s/c4, where the correction factor (which depends on N) is
given in terms of the Gamma function, and equals:

This arises because the sampling distribution of the sample standard deviation follows a (scaled) chi distribution, and
the correction factor is the mean of the chi distribution.
An approximation is given by replacing N − 1 with N − 1.5, yielding:

The error in this approximation decays quadratically (as 1/N2), and it is suited for all but the smallest samples or
highest precision: for n = 3 the bias is equal to 1.3%, and for n = 9 the bias is already less than 0.1%.
For other distributions, the correct formula depends on the distribution, but a rule of thumb is to use the further
refinement of the approximation:

where γ2 denotes the population excess kurtosis. The excess kurtosis may be either known beforehand for certain
distributions, or estimated from the data.

Confidence interval of a sampled standard deviation
The standard deviation we obtain by sampling a distribution is itself not absolutely accurate, both for mathematical
reasons (explained here by the confidence interval) and for practical reasons of measurement (measurement error).
The mathematical effect can be described by the confidence interval or CI. To show how a larger sample will
increase the confidence interval, consider the following examples: For a small population of N=2, the 95% CI of the
SD is from 0.45*SD to 31.9*SD. In other words, the standard deviation of the distribution in 95% of the cases can be
larger by a factor of 31 or smaller by a factor of 2. For a larger population of N=10, the CI is 0.69*SD to 1.83*SD.
So even with a sample population of 10, the actual SD can still be almost a factor 2 higher than the sampled SD. For
a sample population N=100, this is down to 0.88*SD to 1.16*SD. To be more certain that the sampled SD is close to
the actual SD we need to sample a large number of points.

Identities and mathematical properties
The standard deviation is invariant under changes in location, and scales directly with the scale of the random
variable. Thus, for a constant c and random variables X and Y:

The standard deviation of the sum of two random variables can be related to their individual standard deviations and
the covariance between them:
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where and stand for variance and covariance, respectively.
The calculation of the sum of squared deviations can be related to moments calculated directly from the data. The
standard deviation of the sample can be computed as:

The sample standard deviation can be computed as:

For a finite population with equal probabilities at all points, we have

This means that the standard deviation is equal to the square root of (the average of the squares less the square of the
average). See computational formula for the variance for proof, and for an analogous result for the sample standard
deviation.

Interpretation and application

Example of two sample populations with the same mean and different standard
deviations. Red population has mean 100 and SD 10; blue population has mean 100 and

SD 50.Wikipedia:Disputed statement

A large standard deviation indicates
that the data points are far from the
mean and a small standard deviation
indicates that they are clustered closely
around the mean.
For example, each of the three
populations {0, 0, 14, 14}, {0, 6, 8,
14} and {6, 6, 8, 8} has a mean of 7.
Their standard deviations are 7, 5, and
1, respectively. The third population
has a much smaller standard deviation
than the other two because its values
are all close to 7. It will have the same
units as the data points themselves. If,
for instance, the data set {0, 6, 8, 14}
represents the ages of a population of
four siblings in years, the standard
deviation is 5 years. As another
example, the population {1000, 1006, 1008, 1014} may represent the distances traveled by four athletes, measured in
meters. It has a mean of 1007 meters, and a standard deviation of 5 meters.
Standard deviation may serve as a measure of uncertainty. In physical science, for example, the reported standard
deviation of a group of repeated measurements gives the precision of those measurements. When deciding whether
measurements agree with a theoretical prediction, the standard deviation of those measurements is of crucial
importance: if the mean of the measurements is too far away from the prediction (with the distance measured in
standard deviations), then the theory being tested probably needs to be revised. This makes sense since they fall
outside the range of values that could reasonably be expected to occur, if the prediction were correct and the standard
deviation appropriately quantified. See prediction interval.
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While the standard deviation does measure how far typical values tend to be from the mean, other measures are
available. An example is the mean absolute deviation, which might be considered a more direct measure of average
distance, compared to the root mean square distance inherent in the standard deviation.

Application examples
The practical value of understanding the standard deviation of a set of values is in appreciating how much variation
there is from the average (mean).

Climate

As a simple example, consider the average daily maximum temperatures for two cities, one inland and one on the
coast. It is helpful to understand that the range of daily maximum temperatures for cities near the coast is smaller
than for cities inland. Thus, while these two cities may each have the same average maximum temperature, the
standard deviation of the daily maximum temperature for the coastal city will be less than that of the inland city as,
on any particular day, the actual maximum temperature is more likely to be farther from the average maximum
temperature for the inland city than for the coastal one.

Particle physics

Particle physics uses a standard of "5 sigma" for the declaration of a discovery. At five-sigma there is only one
chance in nearly two million that a random fluctuation would yield the result. This level of certainty prompted the
announcement that a particle consistent with the Higgs boson has been discovered in two independent experiments at
CERN.

Finance

In finance, standard deviation is often used as a measure of the risk associated with price-fluctuations of a given
asset (stocks, bonds, property, etc.), or the risk of a portfolio of assets (actively managed mutual funds, index mutual
funds, or ETFs). Risk is an important factor in determining how to efficiently manage a portfolio of investments
because it determines the variation in returns on the asset and/or portfolio and gives investors a mathematical basis
for investment decisions (known as mean-variance optimization). The fundamental concept of risk is that as it
increases, the expected return on an investment should increase as well, an increase known as the risk premium. In
other words, investors should expect a higher return on an investment when that investment carries a higher level of
risk or uncertainty. When evaluating investments, investors should estimate both the expected return and the
uncertainty of future returns. Standard deviation provides a quantified estimate of the uncertainty of future returns.
For example, let's assume an investor had to choose between two stocks. Stock A over the past 20 years had an
average return of 10 percent, with a standard deviation of 20 percentage points (pp) and Stock B, over the same
period, had average returns of 12 percent but a higher standard deviation of 30 pp. On the basis of risk and return, an
investor may decide that Stock A is the safer choice, because Stock B's additional two percentage points of return is
not worth the additional 10 pp standard deviation (greater risk or uncertainty of the expected return). Stock B is
likely to fall short of the initial investment (but also to exceed the initial investment) more often than Stock A under
the same circumstances, and is estimated to return only two percent more on average. In this example, Stock A is
expected to earn about 10 percent, plus or minus 20 pp (a range of 30 percent to −10 percent), about two-thirds of the
future year returns. When considering more extreme possible returns or outcomes in future, an investor should
expect results of as much as 10 percent plus or minus 60 pp, or a range from 70 percent to −50 percent, which
includes outcomes for three standard deviations from the average return (about 99.7 percent of probable returns).
Calculating the average (or arithmetic mean) of the return of a security over a given period will generate the
expected return of the asset. For each period, subtracting the expected return from the actual return results in the
difference from the mean. Squaring the difference in each period and taking the average gives the overall variance of
the return of the asset. The larger the variance, the greater risk the security carries. Finding the square root of this
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variance will give the standard deviation of the investment tool in question.
Population standard deviation is used to set the width of Bollinger Bands, a widely adopted technical analysis tool.
For example, the upper Bollinger Band is given as x + nσx. The most commonly used value for n is 2; there is about
a five percent chance of going outside, assuming a normal distribution of returns.
Unfortunately, financial time series are known to be non-stationary series, whereas the statistical calculations above,
such as standard deviation, apply only to stationary series. Whatever apparent "predictive powers" or "forecasting
ability" that may appear when applied as above is illusory. To apply the above statistical tools to non-stationary
series, the series first must be transformed to a stationary series, enabling use of statistical tools that now have a valid
basis from which to work.

Geometric interpretation

It is requested that a diagram or diagrams be included in this article to improve its quality. Specific illustrations, plots or
diagrams can be requested at the Graphic Lab.

For more information, refer to discussion on this page and/or the listing at Wikipedia:Requested images.

To gain some geometric insights and clarification, we will start with a population of three values, x1, x2, x3. This
defines a point P = (x1, x2, x3) in R3. Consider the line L = {(r, r, r) : r ∈ R}. This is the "main diagonal" going
through the origin. If our three given values were all equal, then the standard deviation would be zero and P would
lie on L. So it is not unreasonable to assume that the standard deviation is related to the distance of P to L. And that
is indeed the case. To move orthogonally from L to the point P, one begins at the point:

whose coordinates are the mean of the values we started out with. A little algebra shows that the distance between P
and M (which is the same as the orthogonal distance between P and the line L) is equal to the standard deviation of
the vector x1, x2, x3, multiplied by the square root of the number of dimensions of the vector (3 in this case.)

Chebyshev's inequality
An observation is rarely more than a few standard deviations away from the mean. Chebyshev's inequality ensures
that, for all distributions for which the standard deviation is defined, the amount of data within a number of standard
deviations of the mean is at least as much as given in the following table.

Minimum population Distance from mean

50% √2

75% 2

89% 3

94% 4

96% 5

97% 6

[1]
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Rules for normally distributed data

Dark blue is one standard deviation on either side of the mean. For the normal
distribution, this accounts for 68.27 percent of the set; while two standard deviations from

the mean (medium and dark blue) account for 95.45 percent; three standard deviations
(light, medium, and dark blue) account for 99.73 percent; and four standard deviations
account for 99.994 percent. The two points of the curve that are one standard deviation

from the mean are also the inflection points.

The central limit theorem says that the
distribution of an average of many
independent, identically distributed
random variables tends toward the
famous bell-shaped normal distribution
with a probability density function of:

where μ is the expected value of the
random variables, σ equals their
distribution's standard deviation
divided by n1/2, and n is the number of
random variables. The standard
deviation therefore is simply a scaling
variable that adjusts how broad the
curve will be, though it also appears in
the normalizing constant.

If a data distribution is approximately normal, then the proportion of data values within z standard deviations of the
mean is defined by:

Proportion = 

where is the error function. If a data distribution is approximately normal then about 68 percent of the data values
are within one standard deviation of the mean (mathematically, μ ± σ, where μ is the arithmetic mean), about 95
percent are within two standard deviations (μ ± 2σ), and about 99.7 percent lie within three standard deviations
(μ ± 3σ). This is known as the 68-95-99.7 rule, or the empirical rule.

For various values of z, the percentage of values expected to lie in and outside the symmetric interval, CI = (−zσ, zσ),
are as follows:

zσ Percentage within CI Percentage outside CI Fraction outside CI

0.674490σ 50% 50% 1 / 2

0.994458σ 68% 32% 1 / 3.125

1σ 68.2689492% 31.7310508% 1 / 3.1514872

1.281552σ 80% 20% 1 / 5

1.644854σ 90% 10% 1 / 10

1.959964σ 95% 5% 1 / 20

2σ 95.4499736% 4.5500264% 1 / 21.977895

2.575829σ 99% 1% 1 / 100

3σ 99.7300204% 0.2699796% 1 / 370.398

3.290527σ 99.9% 0.1% 1 / 1000

3.890592σ 99.99% 0.01% 1 / 10000

4σ 99.993666% 0.006334% 1 / 15787

4.417173σ 99.999% 0.001% 1 / 100000
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4.5σ 99.9993204653751% 0.0006795346249% 3.4 / 1000000 (on each side of mean)

4.891638σ 99.9999% 0.0001% 1 / 1000000

5σ 99.9999426697% 0.0000573303% 1 / 1744278

5.326724σ 99.99999% 0.00001% 1 / 10000000

5.730729σ 99.999999% 0.000001% 1 / 100000000

6σ 99.9999998027% 0.0000001973% 1 / 506797346

6.109410σ 99.9999999% 0.0000001% 1 / 1000000000

6.466951σ 99.99999999% 0.00000001% 1 / 10000000000

6.806502σ 99.999999999% 0.000000001% 1 / 100000000000

7σ 99.9999999997440% 0.000000000256% 1 / 390682215445

Relationship between standard deviation and mean
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain
sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about
the mean. This is because the standard deviation from the mean is smaller than from any other point. The precise
statement is the following: suppose x1, ..., xn are real numbers and define the function:

Using calculus or by completing the square, it is possible to show that σ(r) has a unique minimum at the mean:

Variability can also be measured by the coefficient of variation, which is the ratio of the standard deviation to the
mean. It is a dimensionless number.

Standard deviation of the mean
Often, we want some information about the precision of the mean we obtained. We can obtain this by determining
the standard deviation of the sampled mean. Assuming statistical independence of the values in the sample, the
standard deviation of the mean is related to the standard deviation of the distribution by:

where N is the number of observations in the sample used to estimate the mean. This can easily be proven with (see
basic properties of the variance):

hence

Resulting in:
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It should be emphasized that in order to estimate standard deviation of the mean it is necessary to know
standard deviation of the entire population beforehand. However, in most applications this parameter is unknown.
For example, if series of 10 measurements of previously unknown quantity is performed in laboratory, it is possible
to calculate resulting sample mean and sample standard deviation, but it is impossible to calculate standard deviation
of the mean.

Rapid calculation methods
The following two formulas can represent a running (repeatedly updated) standard deviation. A set of two power
sums s1 and s2 are computed over a set of N values of x, denoted as x1, ..., xN:

Given the results of these running summations, the values N, s1, s2 can be used at any time to compute the current
value of the running standard deviation:

Where : 

Similarly for sample standard deviation,

In a computer implementation, as the three sj sums become large, we need to consider round-off error, arithmetic
overflow, and arithmetic underflow. The method below calculates the running sums method with reduced rounding
errors. This is a "one pass" algorithm for calculating variance of n samples without the need to store prior data during
the calculation. Applying this method to a time series will result in successive values of standard deviation
corresponding to n data points as n grows larger with each new sample, rather than a constant-width sliding window
calculation.
For k = 1, ..., n:

where A is the mean value.

Note: since or 
Sample variance:

Population variance:
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Weighted calculation
When the values xi are weighted with unequal weights wi, the power sums s0, s1, s2 are each computed as:

And the standard deviation equations remain unchanged. Note that s0 is now the sum of the weights and not the
number of samples N.
The incremental method with reduced rounding errors can also be applied, with some additional complexity.
A running sum of weights must be computed for each k from 1 to n:

and places where 1/n is used above must be replaced by wi/Wn:

In the final division,

and

where n is the total number of elements, and n' is the number of elements with non-zero weights. The above formulas
become equal to the simpler formulas given above if weights are taken as equal to one.

Combining standard deviations

Population-based statistics
The populations of sets, which may overlap, can be calculated simply as follows:

Standard deviations of non-overlapping (X ∩ Y = ∅) sub-populations can be aggregated as follows if the size (actual
or relative to one another) and means of each are known:

For example, suppose it is known that the average American man has a mean height of 70 inches with a standard
deviation of three inches and that the average American woman has a mean height of 65 inches with a standard
deviation of two inches. Also assume that the number of men, N, is equal to the number of women. Then the mean
and standard deviation of heights of American adults could be calculated as:
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For the more general case of M non-overlapping populations, X1 through XM, and the aggregate population
:

where

If the size (actual or relative to one another), mean, and standard deviation of two overlapping populations are
known for the populations as well as their intersection, then the standard deviation of the overall population can still
be calculated as follows:

If two or more sets of data are being added together datapoint by datapoint, the standard deviation of the result can
be calculated if the standard deviation of each data set and the covariance between each pair of data sets is known:

For the special case where no correlation exists between any pair of data sets, then the relation reduces to the
root-mean-square:

Sample-based statistics
Standard deviations of non-overlapping (X ∩ Y = ∅) sub-samples can be aggregated as follows if the actual size and
means of each are known:

For the more general case of M non-overlapping data sets, X1 through XM, and the aggregate data set :
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where:

If the size, mean, and standard deviation of two overlapping samples are known for the samples as well as their
intersection, then the standard deviation of the aggregated sample can still be calculated. In general:

History
The term standard deviation was first used in writing by Karl Pearson in 1894, following his use of it in lectures.
This was as a replacement for earlier alternative names for the same idea: for example, Gauss used mean error. It
may be worth noting in passing that the mean error is mathematically distinct from the standard deviation.
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Coefficient of variation
In probability theory and statistics, the coefficient of variation (CV) is a normalized measure of dispersion of a
probability distribution or frequency distribution. It is also known as unitized risk or the variation coefficient. The
absolute value of the CV is sometimes known as relative standard deviation (RSD), which is expressed as a
percentage.

Definition
The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean :

which is the inverse of one definition of the signal-to-noise ratio. It shows the extent of variability in relation to mean
of the population.
The coefficient of variation should be computed only for data measured on a ratio scale, as these are measurements
that can only take non-negative values. The coefficient of variation may not have any meaning for data on an interval
scale. For example, most temperature scales are interval scales (e.g., Celsius, Fahrenheit etc.) that can take both
positive and negative values, whereas the Kelvin scale has an absolute null value (i.e., 0K is the absence of heat), and
negative values are nonsensical. Hence, the Kelvin scale is a ratio scale. While the standard deviation (SD) can be
derived on both the Kelvin and the Celsius scale (with both leading to the same SDs), the CV is only relevant as a
measure of relative variability for the Kelvin scale.
Often, laboratory values that are measured based on chromatographic methods are log-normally distributed. In this
case, the CV would be constant over a large range of measurements, while SDs would vary depending on typical
values that are being measured.

A nonparametric possibility is the quartile coefficient of dispersion, i.e. interquartile range divided by the
median .

Estimation
When only a sample of data from a population is available, the population CV can be estimated using the ratio of the
sample standard deviation to the sample mean :

But this estimator, when applied to a small or moderately sized sample, tends to be too low: it is a biased estimator.
For normally distributed data, an unbiased estimator[1] for a sample of size n is:

In many applications, it can be assumed that data are log-normally distributed (evidenced by the presence of
skewness in the sampled data). In such cases, a more accurate estimate, derived from the properties of the log-normal
distribution, is defined as:

where is the sample standard deviation of the data after a natural log transformation. (In the event that
measurements are recorded using any other logarithmic base, b, their standard deviation is converted to base e
using , and the formula for remains the same.[2]) This estimate is sometimes referred to as the
“geometric coefficient of variation”[3] in order to distinguish it from the simple estimate above. However, "geometric
coefficient of variation" has also been defined as:
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This term was intended to be analogous to the coefficient of variation, for describing multiplicative variation in
log-normal data, but this definition of GCV has no theoretical basis as an estimate of itself.
For many practical purposes (such as sample size determination and calculation of confidence intervals) it is 
which is of most use in the context of log-normally distributed data. If necessary, this can be derived from an
estimate of or GCV by inverting the corresponding formula.

Laboratory measures of intra and inter-assay CVs
CV measures are often used as quality controls for quantitative laboratory assays. While intra-assay and and
inter-assay CVs might be assumed to be calculated by simply averaging CV values across CV values for multiple
samples within one assay or by averaging multiple inter-assay CV estimates, it has been suggested that these
practices are incorrect and that a more complex computational process is required.

Comparison to standard deviation

Advantages
The coefficient of variation is useful because the standard deviation of data must always be understood in the context
of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement
has been taken, so it is a dimensionless number. For comparison between data sets with different units or widely
different means, one should use the coefficient of variation instead of the standard deviation.

Disadvantages
•• When the mean value is close to zero, the coefficient of variation will approach infinity and is therefore sensitive

to small changes in the mean. This is often the case if the values do not originate from a ratio scale.
• Unlike the standard deviation, it cannot be used directly to construct confidence intervals for the mean.

Applications
The coefficient of variation is also common in applied probability fields such as renewal theory, queueing theory,
and reliability theory. In these fields, the exponential distribution is often more important than the normal
distribution. The standard deviation of an exponential distribution is equal to its mean, so its coefficient of variation
is equal to 1. Distributions with CV < 1 (such as an Erlang distribution) are considered low-variance, while those
with CV > 1 (such as a hyper-exponential distribution) are considered high-variance. Some formulas in these fields
are expressed using the squared coefficient of variation, often abbreviated SCV. In modeling, a variation of the CV
is the CV(RMSD). Essentially the CV(RMSD) replaces the standard deviation term with the Root Mean Square
Deviation (RMSD). While many natural processes indeed show a correlation between the average value and the
amount of variation around it, accurate sensor devices need to be designed in such a way that the coefficient of
variation is close to zero, i.e., yielding a constant absolute error over their working range.
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Distribution
Provided that negative and small positive values of the sample mean occur with negligible frequency, the probability
distribution of the coefficient of variation for a sample of size n has been shown by Hendricks and Robey to be

where the symbol indicates that the summation is over only even values of n-1-i, i.e., if n is odd, sum over

even values of i and if n is even, sum only over odd values of i.
This is useful, for instance, in the construction of hypothesis tests or confidence intervals. Statistical inference for the
coefficient of variation in normally distributed data is often based on McKay's chi-square approximation for the
coefficient of variation [4]

Similar ratios
Standardized moments are similar ratios, , which are also dimensionless and scale invariant. The
variance-to-mean ratio, , is another similar ratio, but is not dimensionless, and hence not scale invariant. See
Normalization (statistics) for further ratios.
In signal processing, particularly image processing, the reciprocal ratio is referred to as the signal to noise
ratio.
• Relative standard deviation, 
• Standardized moment, 
• Variance-to-mean ratio, 
• Fano factor, (windowed VMR)
• Signal-to-noise ratio, (in signal processing)

•• Signal-to-noise ratio (image processing)
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Skewness

Example of experimental data with non-zero (positive)
skewness (gravitropic response of wheat coleoptiles,

1,790)

In probability theory and statistics, skewness is a measure of the
asymmetry of the probability distribution of a real-valued random
variable about its mean. The skewness value can be positive or
negative, or even undefined.

The qualitative interpretation of the skew is complicated. For a
unimodal distribution, negative skew indicates that the tail on the
left side of the probability density function is longer or fatter than
the right side – it does not distinguish these shapes. Conversely,
positive skew indicates that the tail on the right side is longer or
fatter than the left side. In cases where one tail is long but the other
tail is fat, skewness does not obey a simple rule. For example, a
zero value indicates that the tails on both sides of the mean
balance out, which is the case both for a symmetric distribution,
and for asymmetric distributions where the asymmetries even out,
such as one tail being long but thin, and the other being short but
fat. Further, in multimodal distributions and discrete distributions,
skewness is also difficult to interpret. Importantly, the skewness
does not determine the relationship of mean and median.

Introduction

Consider the distribution in the figure. The bars on the right side of the distribution taper differently than the bars on
the left side. These tapering sides are called tails, and they provide a visual means for determining which of the two
kinds of skewness a distribution has:

1. negative skew: The left tail is longer; the mass of the distribution is concentrated on the right of the figure. The
distribution is said to be left-skewed, left-tailed, or skewed to the left.[1] Example (observations):
1,1001,1002,1003.

2. positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the figure. The
distribution is said to be right-skewed, right-tailed, or skewed to the right. Example (observations): 1,2,3,1000.

Relationship of mean and median
The skewness is not strictly connected with the relationship between the mean and median: a distribution with
negative skew can have the mean greater than or less than the median, and likewise for positive skew.

In the older notion of nonparametric skew, defined as where µ is the mean, ν is the median, and σ is
the standard deviation, the skewness is defined in terms of this relationship: positive/right nonparametric skew
means the mean is greater than (to the right of) the median, while negative/left nonparametric skew means the mean
is less than (to the left of) the median. However, the modern definition of skewness and the traditional nonparametric
definition do not in general have the same sign: while they agree for some families of distributions, they differ in
general, and conflating them is misleading.
If the distribution is symmetric then the mean is equal to the median and the distribution will have zero skewness. If,
in addition, the distribution is unimodal, then the mean = median = mode. This is the case of a coin toss or the series
1,2,3,4,... Note, however, that the converse is not true in general, i.e. zero skewness does not imply that the mean is
equal to the median.
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"Many textbooks," a 2005 article points out, "teach a rule of thumb stating that the mean is right of the median under
right skew, and left of the median under left skew. [But] this rule fails with surprising frequency. It can fail in
multimodal distributions, or in distributions where one tail is long but the other is fat. Most commonly, though, the
rule fails in discrete distributions where the areas to the left and right of the median are not equal.Wikipedia:Please
clarify Such distributions not only contradict the textbook relationship between mean, median, and skew, they also
contradict the textbook interpretation of the median."

Definition
The skewness of a random variable X is the third standardized moment, denoted γ1 and defined as

where μ3 is the third central moment μ, σ is the standard deviation, and E is the expectation operator. The last
equality expresses skewness in terms of the ratio of the third cumulant κ3 and the 1.5th power of the second cumulant
κ2. This is analogous to the definition of kurtosis as the fourth cumulant normalized by the square of the second
cumulant.
The skewness is also sometimes denoted Skew[X].
The formula expressing skewness in terms of the non-central moment E[X3] can be expressed by expanding the
previous formula,
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Sample skewness
For a sample of n values the sample skewness is

where is the sample mean, m3 is the sample third central moment, and m2 is the sample variance.
Given samples from a population, the equation for the sample skewness above is a biased estimator of the
population skewness. (Note that for a discrete distribution the sample skewness may be undefined (0/0), so its
expected value will be undefined.) The usual estimator of population skewness is[citation needed]

where is the unique symmetric unbiased estimator of the third cumulant and is the symmetric unbiased
estimator of the second cumulant. Unfortunately is, nevertheless, generally biased (although it obviously has the
correct expected value of zero for a symmetric distribution). Its expected value can even have the opposite sign from
the true skewness. For instance a mixed distribution consisting of very thin Gaussians centred at −99, 0.5, and 2 with
weights 0.01, 0.66, and 0.33 has a skewness of about −9.77, but in a sample of 3, has an expected value of about
0.32, since usually all three samples are in the positive-valued part of the distribution, which is skewed the other
way.
The variance of the skewness of a sample of size n from a normal distribution is[2][3]

An approximate alternative is 6/n but this is inaccurate for small samples.

Properties
Skewness can be infinite, as when

or undefined, as when

In this latter example, the third cumulant is undefined. One can also have distributions such as

where both the second and third cumulants are infinite, so the skewness is again undefined.
If Y is the sum of n independent and identically distributed random variables, all with the distribution of X, then the
third cumulant of Y is n times that of X and the second cumulant of Y is n times that of X, so

. This shows that the skewness of the sum is smaller, as it approaches a Gaussian
distribution in accordance with the central limit theorem.
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Applications
Skewness has benefits in many areas. Many models assume normal distribution; i.e., data are symmetric about the
mean. The normal distribution has a skewness of zero. But in reality, data points may not be perfectly symmetric. So,
an understanding of the skewness of the dataset indicates whether deviations from the mean are going to be positive
or negative.
D'Agostino's K-squared test is a goodness-of-fit normality test based on sample skewness and sample kurtosis.
In almost all countries the distribution of income is skewed to the right.

Other measures of skewness

Pearson's skewness coefficients

Comparison of mean, median and mode of two log-normal distributions with
different skewness.

Karl Pearson suggested simpler calculations
as a measure of skewness:[4] the Pearson
mode or first skewness coefficient, defined
by

• (mean − mode) / standard deviation,
as well as Pearson's median or second
skewness coefficient, defined by
• 3 (mean − median) / standard deviation.
The latter is a simple multiple of the
nonparametric skew.

Starting from a standard cumulant
expansion around a Normal distribution, one
can actually show that skewness = 6 (mean
− median) / standard deviation ( 1 + kurtosis
/ 8) + O(skewness2).[citation needed] One
should keep in mind that above given
equalities often don't hold even approximately and these empirical formulas are abandoned nowadays. There is no
guarantee that these will be the same sign as each other or as the ordinary definition of skewness.

The adjusted Fisher-Pearson standardized moment coefficient is the version found in Excel and several statistical
packages including Minitab, SAS and SPSS.[5] The formula for this statistic is

where n is the sample size and s is the sample standard deviation.
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Quantile based measures
A skewness function

can be defined,[6][7] where F is the cumulative distribution function. This leads to a corresponding overall measure of
skewness[6] defined as the supremum of this over the range 1/2 ≤ u < 1. Another measure can be obtained by
integrating the numerator and denominator of this expression. The function γ(u) satisfies -1 ≤ γ(u) ≤ 1 and is well
defined without requiring the existence of any moments of the distribution.
Galton's measure of skewness[8] is γ(u) evaluated at u = 3 / 4. Other names for this same quantity are the Bowley
Skewness,[9] the Yule-Kendall index[10] and the quartile skewness.
Kelley's measure of skewness uses u = 0.1.[citation needed]

L-moments
Use of L-moments in place of moments provides a measure of skewness known as the L-skewness.

Cyhelský's skewness coefficient
An alternative skewness coefficient may be derived from the sample mean and the individual observations:

a = ( number of observations below the mean - number of observations above the mean ) / total number of
observations

The distribution of the skewness coefficient a in large sample sizes (≥45) approaches that of a normal distribution. If
the variates have a normal or a uniform distribution the distribution of a is the same. The behavior of a when the
variates have other distributions is currently unknown. Although this measure of skewness is very intuitive, an
analytic approach to its distribution has proven difficult.

Distance skewness
A value of skewness equal to zero does not imply that the probability distribution is symmetric. Thus there is a need
for another measure of asymmetry which has this property: such a measure was introduced in 2000.[11] It is called
distance skewness and denoted by dSkew. If X is a random variable which takes values in the d-dimensional
Euclidean space, X has finite expectation, X' is an independent identically distributed copy of X and denotes
the norm in the Euclidean space then a simple measure of asymmetry is

dSkew (X) := 1 - E||X-X'|| / E||X + X'|| if X is not 0 with probability one,
and dSkew (X):= 0 for X = 0 (with probability 1). Distance skewness is always between 0 and 1, equals 0 if and only
if X is diagonally symmetric (X and -X has the same probability distribution) and equals 1 if and only if X is a
nonzero constant with probability one.[12] Thus there is a simple consistent statistical test of diagonal symmetry
based on the sample distance skewness:

dSkewn(X):= 1- ∑i,j ||xi – xj|| / ∑i,j||xi + xj||.
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Groeneveld & Meeden’s coefficient
Groeneveld & Meeden have suggested, as an alternative measure of skewness,

where μ is the mean, ν is the median, |…| is the absolute value and E() is the expectation operator.
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[2][2] Duncan Cramer (1997) Fundamental Statistics for Social Research. Routledge. ISBN13 9780415172042 (p 85)
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0-85264-141-9 (Ex 12.9)
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[6][6] MacGillivray (1992)
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Kurtosis
In probability theory and statistics, kurtosis (from the Greek word κυρτός, kyrtos or kurtos, meaning curved,
arching) is any measure of the "peakedness" of the probability distribution of a real-valued random variable.[1] In a
similar way to the concept of skewness, kurtosis is a descriptor of the shape of a probability distribution and, just as
for skewness, there are different ways of quantifying it for a theoretical distribution and corresponding ways of
estimating it from a sample from a population. There are various interpretations of kurtosis, and of how particular
measures should be interpreted; these are primarily peakedness (width of peak), tail weight, and lack of shoulders
(distribution primarily peak and tails, not in between).
One common measure of kurtosis, originating with Karl Pearson, is based on a scaled version of the fourth moment
of the data or population, but it has been argued that this really measures heavy tails, and not peakedness.[2] For this
measure, higher kurtosis means more of the variance is the result of infrequent extreme deviations, as opposed to
frequent modestly sized deviations. It is common practice to use an adjusted version of Pearson's kurtosis, the excess
kurtosis, to provide a comparison of the shape of a given distribution to that of the normal distribution. Distributions
with negative or positive excess kurtosis are called platykurtic distributions or leptokurtic distributions
respectively.
Alternative measures of kurtosis are: the L-kurtosis, which is a scaled version of the fourth L-moment; measures
based on 4 population or sample quantiles.[3] These correspond to the alternative measures of skewness that are not
based on ordinary moments.

The "Darkness" data is platykurtic
(−0.194), while "Far Red Light" shows

leptokurtosis (0.055)

Pearson moments

The fourth standardized moment is defined as

where μ4 is the fourth moment about the mean and σ is the standard deviation.
The fourth standardized moment is lower bounded by the squared skewness
plus 1 [4]

where μ3 is the third moment about the mean.
The fourth standardized moment is sometimes used as the definition of kurtosis
in older works, but is not the definition used here.

Kurtosis is more commonly defined as the fourth cumulant divided by the
square of the second cumulant[citation needed], which is equal to the fourth
moment around the mean divided by the square of the variance of the
probability distribution minus 3,

which is also known as excess kurtosis. The "minus 3" at the end of this
formula is often explained as a correction to make the kurtosis of the normal
distribution equal to zero. Another reason can be seen by looking at the formula
for the kurtosis of the sum of random variables. Suppose that Y is the sum of n
identically distributed independent random variables all with the same
distribution as X. Then
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This formula would be much more complicated if kurtosis were defined just as μ4 / σ4 (without the minus 3).
More generally, if X1, ..., Xn are independent random variables, not necessarily identically distributed, but all having
the same variance, then

whereas this identity would not hold if the definition did not include the subtraction of 3.
The fourth standardized moment must be at least 1, so the excess kurtosis must be −2 or more. This lower bound is
realized by the Bernoulli distribution with p = ½, or "coin toss". There is no upper limit to the excess kurtosis and it
may be infinite.

Interpretation
The exact interpretation of the Pearson measure of kurtosis (or excess kurtosis) is disputed. The "classical"
interpretation, which applies only to symmetric and unimodal distributions (those whose skewness is 0), is that
kurtosis measures both the "peakedness" of the distribution and the heaviness of its tail.[5] Various statisticians have
proposed other interpretations, such as "lack of shoulders" (where the "shoulder" is defined vaguely as the area
between the peak and the tail, or more specifically as the area about one standard deviation from the mean) or
"bimodality".[6] Balanda and MacGillivray assert that the standard definition of kurtosis "is a poor measure of the
kurtosis, peakedness, or tail weight of a distribution"[7] and instead propose to "define kurtosis vaguely as the
location- and scale-free movement of probability mass from the shoulders of a distribution into its center and tails".

Terminology and examples
A high kurtosis distribution has a sharper peak and longer, fatter tails, while a low kurtosis distribution has a more
rounded peak and shorter, thinner tails.
Distributions with zero excess kurtosis are called mesokurtic, or mesokurtotic. The most prominent example of a
mesokurtic distribution is the normal distribution family, regardless of the values of its parameters. A few other
well-known distributions can be mesokurtic, depending on parameter values: for example the binomial distribution is
mesokurtic for .

A distribution with positive excess kurtosis is called leptokurtic, or leptokurtotic. "Lepto-" means "slender".[8] In
terms of shape, a leptokurtic distribution has a more acute peak around the mean and fatter tails. Examples of
leptokurtic distributions include the Student's t-distribution, Rayleigh distribution, Laplace distribution, exponential
distribution, Poisson distribution and the logistic distribution. Such distributions are sometimes termed super
Gaussian.[citation needed]

The coin toss is the most platykurtic distribution

A distribution with negative excess kurtosis is called platykurtic, or
platykurtotic. "Platy-" means "broad".[9] In terms of shape, a
platykurtic distribution has a lower, wider peak around the mean and
thinner tails. Examples of platykurtic distributions include the
continuous or discrete uniform distributions, and the raised cosine
distribution. The most platykurtic distribution of all is the Bernoulli
distribution with p = ½ (for example the number of times one obtains
"heads" when flipping a coin once, a coin toss), for which the excess
kurtosis is −2. Such distributions are sometimes termed sub-Gaussian.[10]
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Graphical examples

The Pearson type VII family

pdf for the Pearson type VII distribution with kurtosis of infinity (red); 2 (blue);
and 0 (black)

log-pdf for the Pearson type VII distribution with kurtosis of infinity (red); 2
(blue); 1, 1/2, 1/4, 1/8, and 1/16 (gray); and 0 (black)

The effects of kurtosis are illustrated using a
parametric family of distributions whose
kurtosis can be adjusted while their
lower-order moments and cumulants remain
constant. Consider the Pearson type VII
family, which is a special case of the
Pearson type IV family restricted to
symmetric densities. The probability density
function is given by

where a is a scale parameter and m is a
shape parameter.

All densities in this family are symmetric.
The kth moment exists provided
m > (k + 1)/2. For the kurtosis to exist, we
require m > 5/2. Then the mean and
skewness exist and are both identically zero.
Setting a2 = 2m − 3 makes the variance
equal to unity. Then the only free parameter
is m, which controls the fourth moment (and
cumulant) and hence the kurtosis. One can
reparameterize with ,
where is the kurtosis as defined above.
This yields a one-parameter leptokurtic
family with zero mean, unit variance, zero
skewness, and arbitrary positive kurtosis.
The reparameterized density is

In the limit as one obtains the
density

which is shown as the red curve in the images on the right.

In the other direction as one obtains the standard normal density as the limiting distribution, shown as the
black curve.
In the images on the right, the blue curve represents the density with kurtosis of 2. The top image 
shows that leptokurtic densities in this family have a higher peak than the mesokurtic normal density. The 
comparatively fatter tails of the leptokurtic densities are illustrated in the second image, which plots the natural 
logarithm of the Pearson type VII densities: the black curve is the logarithm of the standard normal density, which is 
a parabola. One can see that the normal density allocates little probability mass to the regions far from the mean 
("has thin tails"), compared with the blue curve of the leptokurtic Pearson type VII density with kurtosis of 2.
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Between the blue curve and the black are other Pearson type VII densities with γ2 = 1, 1/2, 1/4, 1/8, and 1/16. The
red curve again shows the upper limit of the Pearson type VII family, with (which, strictly speaking, means that the
fourth moment does not exist). The red curve decreases the slowest as one moves outward from the origin ("has fat
tails").

Kurtosis of well-known distributions

Several well-known, unimodal and
symmetric distributions from different
parametric families are compared here. Each
has a mean and skewness of zero. The
parameters have been chosen to result in a
variance equal to 1 in each case. The images
on the right show curves for the following
seven densities, on a linear scale and
logarithmic scale:
• D: Laplace distribution, also known as

the double exponential distribution, red
curve (two straight lines in the log-scale
plot), excess kurtosis = 3

• S: hyperbolic secant distribution, orange
curve, excess kurtosis = 2

• L: logistic distribution, green curve,
excess kurtosis = 1.2

• N: normal distribution, black curve
(inverted parabola in the log-scale plot),
excess kurtosis = 0

• C: raised cosine distribution, cyan curve,
excess kurtosis = −0.593762...

• W: Wigner semicircle distribution, blue
curve, excess kurtosis = −1

• U: uniform distribution, magenta curve
(shown for clarity as a rectangle in both
images), excess kurtosis = −1.2.

Note that in these cases the platykurtic
densities have bounded support, whereas the densities with positive or zero excess kurtosis are supported on the
whole real line.

There exist platykurtic densities with infinite support,
• e.g., exponential power distributions with sufficiently large shape parameter b
and there exist leptokurtic densities with finite support.
• e.g., a distribution that is uniform between −3 and −0.3, between −0.3 and 0.3, and between 0.3 and 3, with the

same density in the (−3, −0.3) and (0.3, 3) intervals, but with 20 times more density in the (−0.3, 0.3) interval
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Sample kurtosis
For a sample of n values the sample excess kurtosis is

where m4 is the fourth sample moment about the mean, m2 is the second sample moment about the mean (that is, the
sample variance), xi is the ith value, and is the sample mean.
The variance of the sample kurtosis of a sample of size n from the normal distribution is[11]

An approximate alternative is 24/n but this is inaccurate for small samples.

Estimators of population kurtosis
Given a sub-set of samples from a population, the sample excess kurtosis above is a biased estimator of the
population excess kurtosis. The usual estimator of the population excess kurtosis (used in DAP/SAS, Minitab,
PSPP/SPSS, and Excel but not by BMDP) is G2, defined as follows:

where k4 is the unique symmetric unbiased estimator of the fourth cumulant, k2 is the unbiased estimate of the second
cumulant (identical to the unbiased estimate of the sample variance), m4 is the fourth sample moment about the
mean, m2 is the second sample moment about the mean, xi is the ith value, and is the sample mean. Unfortunately,

is itself generally biased. For the normal distribution it is unbiased.[citation needed]

For computationally efficient ways of calculating the sample kurtosis see Algorithms for calculating higher-order
statistics.
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Applications
D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and
sample kurtosis, as is the Jarque–Bera test for normality.
For non-normal samples, the variance of the variance depends on the kurtosis; for details, please see variance.
Pearson's definition of kurtosis is used as an indicator of intermittency in turbulence.[12]

Other measures of kurtosis
A different measure of "kurtosis", that is of the "peakedness" of a distribution, is provided by using L-moments
instead of the ordinary moments.
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External links
• Hazewinkel, Michiel, ed. (2001), "Excess coefficient" (http:/ / www. encyclopediaofmath. org/ index.

php?title=p/ e036800), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
• Free Online Software (Calculator) (http:/ / www. wessa. net/ skewkurt. wasp) computes various types of skewness

and kurtosis statistics for any dataset (includes small and large sample tests)..
• Kurtosis (http:/ / jeff560. tripod. com/ k. html) on the Earliest known uses of some of the words of mathematics

(http:/ / jeff560. tripod. com/ mathword. html)
• Celebrating 100 years of Kurtosis (http:/ / faculty. etsu. edu/ seier/ doc/ Kurtosis100years. doc) a history of the

topic, with different measures of kurtosis.

Ranking
A ranking is a relationship between a set of items such that, for any two items, the first is either 'ranked higher than',
'ranked lower than' or 'ranked equal to' the second. In mathematics, this is known as a weak order or total preorder of
objects. It is not necessarily a total order of objects because two different objects can have the same ranking. The
rankings themselves are totally ordered. For example, materials are totally preordered by hardness, while degrees of
hardness are totally ordered.
By reducing detailed measures to a sequence of ordinal numbers, rankings make it possible to evaluate complex
information according to certain criteria. Thus, for example, an Internet search engine may rank the pages it finds
according to an estimation of their relevance, making it possible for the user quickly to select the pages they are
likely to want to see.
Analysis of data obtained by ranking commonly requires non-parametric statistics.

Strategies for assigning rankings
It is not always possible to assign rankings uniquely. For example, in a race or competition two (or more) entrants
might tie for a place in the ranking. When computing an ordinal measurement, two (or more) of the quantities being
ranked might measure equal. In these cases, one of the strategies shown below for assigning the rankings may be
adopted.
A common shorthand way to distinguish these ranking strategies is by the ranking numbers that would be produced
for four items, with the first item ranked ahead of the second and third (which compare equal) which are both ranked
ahead of the fourth. These names are also shown below.

Standard competition ranking ("1224" ranking)
In competition ranking, items that compare equal receive the same ranking number, and then a gap is left in the
ranking numbers. The number of ranking numbers that are left out in this gap is one less than the number of items
that compared equal. Equivalently, each item's ranking number is 1 plus the number of items ranked above it. This
ranking strategy is frequently adopted for competitions, as it means that if two (or more) competitors tie for a
position in the ranking, the position of all those ranked below them is unaffected (i.e., a competitor only comes
second if exactly one person scores better than them, third if exactly two people score better than them, fourth if
exactly three people score better than them, etc.).
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking
number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D
gets ranking number 4 ("fourth").
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Modified competition ranking ("1334" ranking)
Sometimes, competition ranking is done by leaving the gaps in the ranking numbers before the sets of equal-ranking
items (rather than after them as in standard competition ranking). The number of ranking numbers that are left out in
this gap remains one less than the number of items that compared equal. Equivalently, each item's ranking number is
equal to the number of items ranked equal to it or above it. This ranking ensures that a competitor only comes second
if they score higher than all but one of their opponents, third if they score higher than all but two of their opponents,
etc.
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking
number 1 ("first"), B gets ranking number 3 ("joint third"), C also gets ranking number 3 ("joint third") and D gets
ranking number 4 ("fourth"). In this case, nobody would get ranking number 2 ("second") and that would be left as a
gap.

Dense ranking ("1223" ranking)
In dense ranking, items that compare equal receive the same ranking number, and the next item(s) receive the
immediately following ranking number. Equivalently, each item's ranking number is 1 plus the number of items
ranked above it that are distinct with respect to the ranking order.
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking
number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D
gets ranking number 3 ("third").

Ordinal ranking ("1234" ranking)
In ordinal ranking, all items receive distinct ordinal numbers, including items that compare equal. The assignment of
distinct ordinal numbers to items that compare equal can be done at random, or arbitrarily, but it is generally
preferable to use a system that is arbitrary but consistent, as this gives stable results if the ranking is done multiple
times. An example of an arbitrary but consistent system would be to incorporate other attributes into the ranking
order (such as alphabetical ordering of the competitor's name) to ensure that no two items exactly match.
With this strategy, if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A
gets ranking number 1 ("first") and D gets ranking number 4 ("fourth"), and either B gets ranking number 2
("second") and C gets ranking number 3 ("third") or C gets ranking number 2 ("second") and B gets ranking number
3 ("third").
In computer data processing, ordinal ranking is also referred to as "row numbering"....

Fractional ranking ("1 2.5 2.5 4" ranking)
Items that compare equal receive the same ranking number, which is the mean of what they would have under
ordinal rankings. Equivalently, the ranking number of 1 plus the number of items ranked above it plus half the
number of items equal to it. This strategy has the property that the sum of the ranking numbers is the same as under
ordinal ranking. For this reason, it is used in computing Borda counts and in statistical tests (see below).
Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking
number 1 ("first"), B and C each get ranking number 2.5 (average of "joint second/third") and D gets ranking number
4 ("fourth").
Here's an example: Suppose you have the data set 1 1 2 3 3 4 5 5 5 There are 5 different numbers, so there would be
five different ranks. If 1 and 1 were actually different numbers, they would occupy ranks 1 and 2. Since they are the
same number, you find their rank by finding the average as follows : (rank) 1 + (rank) 2 / 2 numbers total = 1.5
(average rank). The next number in the data set, 2, is thus assigned the rank of 3 (the average takes up 1 and 2 in the
first two 1's). The two 3's in the set would occupy ranks 3 and 4 if they were different numbers, so the average rank
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would be computed as follows: (4 + 5) / 2 = 4.5. 4 would get the rank of 6 (because your average took into account
rank 4 and 5 in the average). there are 3 5's in the data set. Their average rank is computed as (7+8+9)/3 = 8
Your ranks would be: 1.5 1.5 3 4.5 4.5 6 8 8 8

Ranking in statistics
In statistics, "ranking" refers to the data transformation in which numerical or ordinal values are replaced by their
rank when the data are sorted. For example, the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data
items would be 2, 3, 1 and 4 respectively. For example, the ordinal data hot, cold, warm would be replaced by 3, 1,
2. In these examples, the ranks are assigned to values in ascending order. (In some other cases, descending ranks are
used.) Ranks are related to the indexed list of order statistics, which consists of the original dataset rearranged into
ascending order.
Some kinds of statistical tests employ calculations based on ranks. Examples include:
•• Friedman test
•• Kruskal-Wallis test
• Rank products
•• Spearman's rank correlation coefficient
•• Wilcoxon rank-sum test
•• Wilcoxon signed-rank test
Some ranks can have non-integer values for tied data values. For example, when there is an even number of copies
of the same data value, the above described fractional statistical rank of the tied data ends in ½.

Rank function in Excel
The rank function in Microsoft Excel assigns competition ranks ("1224") as described above. For some statistical
purposes, that is not the desired result - for instance, it means that the sum of ranks for a list of a given length
changes depending on the number of ties. Pottel has described a user defined ranking function which assigns
fractional ranks to ties to keep the sum consistent.[1]

Examples of ranking
• In politics, rankings focus on the comparison of economic, social, environmental and governance performance of

countries, see List of international rankings
•• In many sports, individuals or teams are given rankings, generally by the sport's governing body

• In football (soccer) national teams are ranked in the FIFA World Rankings and, unofficially, in the World
Football Elo Ratings.

• In the Olympic Games, each member country (NOC) is ranked based upon gold, silver and bronze medal
counts in the Olympic medal rankings.

• In snooker, players are ranked using the Snooker world rankings
• In ice hockey, national teams are ranked in the IIHF World Ranking
• In golf, the top male golfers are ranked using the Official World Golf Rankings

• In relation to credit standing, the ranking of a security refers to where that particular security would stand in a
wind up of the issuing company, i.e., its seniority in the company's capital structure. For instance, capital notes are
subordinated securities; they would rank behind senior debt in a wind up. In other words the holders of senior
debt would be paid out before subordinated debt holders received any funds.

• Search engines rank web pages by their expected relevance to a user's query using a combination of 
query-dependent and query-independent methods. Query-independent methods attempt to measure the estimated 
importance of a page, independent of any consideration of how well it matches the specific query.
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Query-independent ranking is usually based on link analysis; examples include the HITS algorithm, PageRank
and TrustRank. Query-dependent methods attempt to measure the degree to which a page matches a specific
query, independent of the importance of the page. Query-dependent ranking is usually based on heuristics that
consider the number and locations of matches of the various query words on the page itself, in the URL or in any
anchor text referring to the page.

• In Webometrics it is possible to rank institutions according to their presence in the web (number of webpages)
and the impact of these contents (external inlinks=site citations), such as the Webometrics Ranking of World
Universities

• In video gaming, players may be given a ranking. To "rank up" is to achieve a higher ranking relative to other
players, especially with strategies that do not depend on the player's skill.

• The TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft Research
• A bibliogram ranks common noun phrases in a piece of text.
• In language, the status of an item (usually through what is known as "downranking" or "rank-shifting") in relation

to the uppermost rank in a clause; for example, in the sentence "I want to eat the cake you made today", "eat" is
on the uppermost rank, but "made" is downranked as part of the nominal group "the cake you made today"; this
nominal group behaves as though it were a single noun (i.e., I want to eat it), and thus the verb within it ("made")
is ranked differently from "eat".

• Academic journals are sometimes ranked according to impact factor; the number of later articles that cite articles
in a given journal.
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[1] Hans Pottel. Statistical flaws in Excel (http:/ / www. mis. coventry. ac. uk/ ~nhunt/ pottel. pdf)

External links
• Ronen Perry, The Relative Value of American Law Reviews: A Critical Appraisal of Ranking Methods (http:/ /
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• Ronen Perry, The Relative Value of American Law Reviews: Refinement and Implementation (http:/ / papers.

ssrn. com/ abstract=897063)
• A MATLAB Toolbox for computing rankings using five different methodologies (http:/ / www. mathworks. com/

matlabcentral/ fileexchange/ loadFile. do?objectId=19496)
• TrueSkill Ranking System (http:/ / research. microsoft. com/ en-us/ projects/ trueskill/ default. aspx)
• Ranking Library written in Ruby (http:/ / github. com/ quidproquo/ ranker)
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Graphics

Box plot

Figure 1. Box plot of data from the Michelson–Morley experiment

In descriptive statistics, a box plot or
boxplot is a convenient way of graphically
depicting groups of numerical data through
their quartiles. Box plots may also have
lines extending vertically from the boxes
(whiskers) indicating variability outside the
upper and lower quartiles, hence the terms
box-and-whisker plot and
box-and-whisker diagram. Outliers may
be plotted as individual points.

Box plots display differences between
populations without making any
assumptions of the underlying statistical
distribution: they are non-parametric. The
spacings between the different parts of the
box help indicate the degree of dispersion
(spread) and skewness in the data, and
identify outliers. In addition to the points
themselves, they allow one to visually
estimate various L-estimators, notably the
interquartile range, midhinge, range, mid-range, and trimean. Boxplots can be drawn either horizontally or vertically.

Types of boxplots

Figure 2. Boxplot with whiskers from minimum
to maximum

Box and whisker plots are uniform in their use of the box: the bottom
and top of the box are always the first and third quartiles, and the band
inside the box is always the second quartile (the median). But the ends
of the whiskers can represent several possible alternative values,
among them:

•• the minimum and maximum of all of the data (as in Figure 2)
• the lowest datum still within 1.5 IQR of the lower quartile, and the

highest datum still within 1.5 IQR of the upper quartile (as in Figure
3)

•• one standard deviation above and below the mean of the data
• the 9th percentile and the 91st percentile
• the 2nd percentile and the 98th percentile.
Any data not included between the whiskers should be plotted as an outlier with a dot, small circle, or star, but
occasionally this is not done.
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Figure 3. Same Boxplot with whiskers with
maximum 1.5 IQR

Some box plots include an additional character to represent the mean
of the data.
On some box plots a crosshatch is placed on each whisker, before the
end of the whisker.
Rarely, box plots can be presented with no whiskers at all.
Because of this variability, it is appropriate to describe the convention
being used for the whiskers and outliers in the caption for the plot.

The unusual percentiles 2%, 9%, 91%, 98% are sometimes used for whisker cross-hatches and whisker ends to show
the seven-number summary. If the data is normally distributed, the locations of the seven marks on the box plot will
be equally spaced.

Variations

Figure 4. Four box plots, with and without
notches and variable width

Since the American mathematician John W. Tukey introduced this type
of visual data display in 1969, several variations on the traditional box
plot have been described. Two of the most common are variable width
box plots and notched box plots (see figure 4).

Variable width box plots illustrate the size of each group whose data is
being plotted by making the width of the box proportional to the size of
the group. A popular convention is to make the box width proportional
to the square root of the size of the group.
Notched box plots apply a "notch" or narrowing of the box around the
median. Notches are useful in offering a rough guide to significance of
difference of medians; if the notches of two boxes do not overlap, this
offers evidence of a statistically significant difference between the
medians. The width of the notches is proportional to the interquartile
range of the sample and inversely proportional to the square root of the
size of the sample. However, there is uncertainty about the most appropriate multiplier (as this may vary depending
on the similarity of the variances of the samples). One convention is to use .
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Visualization

Figure 5. Boxplot and a probability density
function (pdf) of a Normal N(0,1σ2) Population

The box plot is a quick way of examining one or more sets of data
graphically. Box plots may seem more primitive than a histogram or
kernel density estimate but they do have some advantages. They take
up less space and are therefore particularly useful for comparing
distributions between several groups or sets of data (see Figure 1 for an
example). Choice of number and width of bins techniques can heavily
influence the appearance of a histogram, and choice of bandwidth can
heavily influence the appearance of a kernel density estimate.

As looking at a statistical distribution is more intuitive than looking at
a box plot, comparing the box plot against the probability density
function (theoretical histogram) for a normal N(0,1σ2) distribution may
be a useful tool for understanding the box plot (Figure 5).
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• Rousseeuw, P. J.; Ruts, I.; Tukey, J. W. (1999). "The Bagplot: A Bivariate Boxplot". The American Statistician
53 (4): 382–387. doi: 10.2307/2686061 (http:/ / dx. doi. org/ 10. 2307/ 2686061). JSTOR  2686061 (http:/ / www.
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External links
• Visual Presentation of Data by Means of Box Plots (http:/ / www. lcgceurope. com/ lcgceurope/ data/

articlestandard/ lcgceurope/ 132005/ 152912/ article. pdf)
• On-line box plot calculator with explanations and examples (http:/ / www. physics. csbsju. edu/ stats/ box2. html)

(Has beeswarm example)
• Beeswarm Boxplot (http:/ / www. r-statistics. com/ 2011/ 03/ beeswarm-boxplot-and-plotting-it-with-r/ ) -

superimposing a frequency-jittered stripchart on top of a boxplot
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Histogram

Histogram

First described by Karl Pearson

Purpose To roughly assess the probability distribution of a given variable by depicting the frequencies of observations occurring in
certain ranges of values

In statistics, a histogram is a graphical representation of the distribution of data. It is an estimate of the probability
distribution of a continuous variable and was first introduced by Karl Pearson. A histogram is a representation of
tabulated frequencies, shown as adjacent rectangles, erected over discrete intervals (bins), with an area equal to the
frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the
interval, i.e., the frequency divided by the width of the interval. The total area of the histogram is equal to the
number of data. A histogram may also be normalized displaying relative frequencies. It then shows the proportion of
cases that fall into each of several categories, with the total area equaling 1. The categories are usually specified as
consecutive, non-overlapping intervals of a variable. The categories (intervals) must be adjacent, and often are
chosen to be of the same size.[1] The rectangles of a histogram are drawn so that they touch each other to indicate
that the original variable is continuous.[2]

Histograms are used to plot the density of data, and often for density estimation: estimating the probability density
function of the underlying variable. The total area of a histogram used for probability density is always normalized to
1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot.
An alternative to the histogram is kernel density estimation, which uses a kernel to smooth samples. This will
construct a smooth probability density function, which will in general more accurately reflect the underlying
variable. The histogram is one of the seven basic tools of quality control.
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Etymology

An example histogram of the heights of 31 Black
Cherry trees.

The etymology of the word histogram is uncertain. Sometimes it is
said to be derived from the Greek histos 'anything set upright' (as the
masts of a ship, the bar of a loom, or the vertical bars of a histogram);
and gramma 'drawing, record, writing'. It is also said that Karl Pearson,
who introduced the term in 1891, derived the name from "historical
diagram".

Examples

The U.S. Census Bureau found that there were 124 million people who
work outside of their homes.[3] Using their data on the time occupied
by travel to work, Table 2 below shows the absolute number of people
who responded with travel times "at least 30 but less than 35 minutes"
is higher than the numbers for the categories above and below it. This

is likely due to people rounding their reported journey time.[citation needed] The problem of reporting values as
somewhat arbitrarily rounded numbers is a common phenomenon when collecting data from people.[citation needed]

Histogram of travel time (to work), US 2000 census. Area under the curve equals the total
number of cases. This diagram uses Q/width from the table.

Data by absolute numbers

Interval Width Quantity Quantity/width

0 5 4180 836

5 5 13687 2737

10 5 18618 3723

15 5 19634 3926

20 5 17981 3596

25 5 7190 1438

30 5 16369 3273

35 5 3212 642

https://en.wikipedia.org/w/index.php?title=Prunus_serotina
https://en.wikipedia.org/w/index.php?title=Prunus_serotina
https://en.wikipedia.org/w/index.php?title=File%3ABlack_cherry_tree_histogram.svg
https://en.wikipedia.org/w/index.php?title=Greek_language
https://en.wikipedia.org/w/index.php?title=Karl_Pearson
https://en.wikipedia.org/w/index.php?title=United_States_Census_Bureau
https://en.wikipedia.org/wiki/Citation_needed
https://en.wikipedia.org/w/index.php?title=Round_number
https://en.wikipedia.org/wiki/Citation_needed
https://en.wikipedia.org/w/index.php?title=File%3ATravel_time_histogram_total_n_Stata.png


Histogram 70

40 5 4122 824

45 15 9200 613

60 30 6461 215

90 60 3435 57

This histogram shows the number of cases per unit interval as the height of each block, so that the area of each block
is equal to the number of people in the survey who fall into its category. The area under the curve represents the total
number of cases (124 million). This type of histogram shows absolute numbers, with Q in thousands.

Histogram of travel time (to work), US 2000 census. Area under the curve equals 1. This
diagram uses Q/total/width from the table.

Data by proportion

Interval Width Quantity (Q) Q/total/width

0 5 4180 0.0067

5 5 13687 0.0221

10 5 18618 0.0300

15 5 19634 0.0316

20 5 17981 0.0290

25 5 7190 0.0116

30 5 16369 0.0264

35 5 3212 0.0052

40 5 4122 0.0066

45 15 9200 0.0049

60 30 6461 0.0017

90 60 3435 0.0005

This histogram differs from the first only in the vertical scale. The area of each block is the fraction of the total that
each category represents, and the total area of all the bars is equal to 1 (the fraction meaning "all"). The curve
displayed is a simple density estimate. This version shows proportions, and is also known as a unit area histogram.
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In other words, a histogram represents a frequency distribution by means of rectangles whose widths represent class
intervals and whose areas are proportional to the corresponding frequencies: the height of each is the average
frequency density for the interval. The intervals are placed together in order to show that the data represented by the
histogram, while exclusive, is also contiguous. (E.g., in a histogram it is possible to have two connecting intervals of
10.5–20.5 and 20.5–33.5, but not two connecting intervals of 10.5–20.5 and 22.5–32.5. Empty intervals are
represented as empty and not skipped.)[4]

Mathematical definition

An ordinary and a cumulative histogram of the same data. The data shown is a random
sample of 10,000 points from a normal distribution with a mean of 0 and a standard

deviation of 1.

In a more general mathematical sense,
a histogram is a function mi that counts
the number of observations that fall
into each of the disjoint categories
(known as bins), whereas the graph of
a histogram is merely one way to
represent a histogram. Thus, if we let n
be the total number of observations
and k be the total number of bins, the
histogram mi meets the following
conditions:

Cumulative histogram
A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the
specified bin. That is, the cumulative histogram Mi of a histogram mj is defined as:

Number of bins and width
There is no "best" number of bins, and different bin sizes can reveal different features of the data. Grouping data is at
least as old as Graunt's work in the 17th century, but no systematic guidelines were given until Sturges's work in
1926.
Using wider bins where the density is low reduces noise due to sampling randomness; using narrower bins where the
density is high (so the signal drowns the noise) gives greater precision to the density estimation. Thus varying the
bin-width within a histogram can be beneficial. Nonetheless, equal-width bins are widely used.
Some theoreticians have attempted to determine an optimal number of bins, but these methods generally make strong
assumptions about the shape of the distribution. Depending on the actual data distribution and the goals of the
analysis, different bin widths may be appropriate, so experimentation is usually needed to determine an appropriate
width. There are, however, various useful guidelines and rules of thumb.[5]

The number of bins k can be assigned directly or can be calculated from a suggested bin width h as:

The braces indicate the ceiling function.
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Square-root choice

which takes the square root of the number of data points in the sample (used by Excel histograms and many
others).[6]

Sturges' formula
Sturges' formula is derived from a binomial distribution and implicitly assumes an approximately normal
distribution.

It implicitly bases the bin sizes on the range of the data and can perform poorly if n < 30.[citation needed] It may also
perform poorly if the data are not normally distributed.
Rice Rule

The Rice Rule [7] is presented as a simple alternative to Sturges's rule.
Doane's formula
Doane's formula[8] is a modification of Sturges' formula which attempts to improve its performance with non-normal
data.

where is the estimated 3rd-moment-skewness of the distribution and

Scott's normal reference rule

where is the sample standard deviation. Scott's normal reference rule is optimal for random samples of normally
distributed data, in the sense that it minimizes the integrated mean squared error of the density estimate.
Freedman–Diaconis' choice
The Freedman–Diaconis rule is:

which is based on the interquartile range, denoted by IQR. It replaces 3.5σ of Scott's rule with 2 IQR, which is less
sensitive than the standard deviation to outliers in data.
Choice based on minimization of an estimated L2 risk function

where and are mean and biased variance of a histogram with bin-width , and
.

Remark

A good reason why the number of bins should be proportional to is the following: suppose that the data are 
obtained as independent realizations of a bounded probability distribution with smooth density. Then the 
histogram remains equally »rugged« as tends to infinity. If is the »width« of the distribution (e. g., the standard 
deviation or the inter-quartile range), then the number of units in a bin (the frequency) is of order and the
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relative standard error is of order . Comparing to the next bin, the relative change of the frequency is of order 

provided that the derivative of the density is non-zero. These two are of the same order if is of order , so that is of
order .
This simple cubic root choice can also be applied to bins with non-constant width.
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Q–Q plot

A normal Q–Q plot of randomly generated, independent standard exponential data,
(X ~ Exp(1)). This Q–Q plot compares a sample of data on the vertical axis to a

statistical population on the horizontal axis. The points follow a strongly nonlinear
pattern, suggesting that the data are not distributed as a standard normal

(X ~ N(0,1)). The offset between the line and the points suggests that the mean of
the data is not 0. The median of the points can be determined to be near 0.7

A normal Q–Q plot comparing randomly generated, independent standard normal
data on the vertical axis to a standard normal population on the horizontal axis. The

linearity of the points suggests that the data are normally distributed.

In statistics, a Q–Q plot ("Q" stands for
quantile) is a probability plot, which is a
graphical method for comparing two
probability distributions by plotting their
quantiles against each other. First, the set of
intervals for the quantiles is chosen. A point
(x,y) on the plot corresponds to one of the
quantiles of the second distribution
(y-coordinate) plotted against the same
quantile of the first distribution
(x-coordinate). Thus the line is a parametric
curve with the parameter which is the
(number of the) interval for the quantile.

If the two distributions being compared are
similar, the points in the Q–Q plot will
approximately lie on the line y = x. If the
distributions are linearly related, the points
in the Q–Q plot will approximately lie on a
line, but not necessarily on the line y = x.
Q–Q plots can also be used as a graphical
means of estimating parameters in a
location-scale family of distributions.

A Q–Q plot is used to compare the shapes
of distributions, providing a graphical view
of how properties such as location, scale,
and skewness are similar or different in the
two distributions. Q–Q plots can be used to
compare collections of data, or theoretical
distributions. The use of Q–Q plots to
compare two samples of data can be viewed
as a non-parametric approach to comparing
their underlying distributions. A Q–Q plot is
generally a more powerful approach to
doing this than the common technique of
comparing histograms of the two samples,
but requires more skill to interpret. Q–Q
plots are commonly used to compare a data
set to a theoretical model.[1] This can
provide an assessment of "goodness of fit"
that is graphical, rather than reducing to a
numerical summary. Q–Q plots are also
used to compare two theoretical
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A Q–Q plot of a sample of data versus a Weibull distribution. The deciles of the
distributions are shown in red. Three outliers are evident at the high end of the

range. Otherwise, the data fit the Weibull(1,2) model well.

A Q–Q plot comparing the distributions of standardized daily maximum
temperatures at 25 stations in the US state of Ohio in March and in July. The

curved pattern suggests that the central quantiles are more closely spaced in July
than in March, and that the March distribution is skewed to the right compared to

the July distribution. The data cover the period 1893–2001.

distributions to each other. Since Q–Q plots
compare distributions, there is no need for
the values to be observed as pairs, as in a
scatter plot, or even for the numbers of
values in the two groups being compared to
be equal.

The term "probability plot" sometimes
refers specifically to a Q–Q plot, sometimes
to a more general class of plots, and
sometimes to the less commonly used P–P
plot. The probability plot correlation
coefficient is a quantity derived from the
idea of Q–Q plots, which measures the
agreement of a fitted distribution with
observed data and which is sometimes used
as a means of fitting a distribution to data.
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Definition and construction

Q–Q plot for first opening/final closing dates of
Washington State Route 20, versus a normal

distribution. Outliers are visible in the upper right
corner.

A Q–Q plot is a plot of the quantiles of two distributions against each
other, or a plot based on estimates of the quantiles. The pattern of
points in the plot is used to compare the two distributions.

The main step in constructing a Q–Q plot is calculating or estimating
the quantiles to be plotted. If one or both of the axes in a Q–Q plot is
based on a theoretical distribution with a continuous cumulative
distribution function (CDF), all quantiles are uniquely defined and can
be obtained by inverting the CDF. If a theoretical probability
distribution with a discontinuous CDF is one of the two distributions
being compared, some of the quantiles may not be defined, so an
interpolated quantile may be plotted. If the Q–Q plot is based on data,
there are multiple quantile estimators in use. Rules for forming Q–Q
plots when quantiles must be estimated or interpolated are called plotting positions.

A simple case is where one has two data sets of the same size. In that case, to make the Q–Q plot, one orders each
set in increasing order, then pairs off and plots the corresponding values. A more complicated construction is the
case where two data sets of different sizes are being compared. To construct the Q–Q plot in this case, it is necessary
to use an interpolated quantile estimate so that quantiles corresponding to the same underlying probability can be
constructed.

More abstractly, given two cumulative probability distribution functions F and G, with associated quantile functions
F −1 and G−1 (the inverse function of the CDF is the quantile function), the Q–Q plot draws the qth quantile of F
against the qth quantile of G for a range of values of q. Thus, the Q–Q plot is a parametric curve indexed over [0,1]
with values in the real plane R2.

Interpretation
The points plotted in a Q–Q plot are always non-decreasing when viewed from left to right. If the two distributions
being compared are identical, the Q–Q plot follows the 45° line y = x. If the two distributions agree after linearly
transforming the values in one of the distributions, then the Q–Q plot follows some line, but not necessarily the line
y = x. If the general trend of the Q–Q plot is flatter than the line y = x, the distribution plotted on the horizontal axis
is more dispersed than the distribution plotted on the vertical axis. Conversely, if the general trend of the Q–Q plot is
steeper than the line y = x, the distribution plotted on the vertical axis is more dispersed than the distribution plotted
on the horizontal axis. Q–Q plots are often arced, or "S" shaped, indicating that one of the distributions is more
skewed than the other, or that one of the distributions has heavier tails than the other.
Although a Q–Q plot is based on quantiles, in a standard Q–Q plot it is not possible to determine which point in the
Q–Q plot determines a given quantile. For example, it is not possible to determine the median of either of the two
distributions being compared by inspecting the Q–Q plot. Some Q–Q plots indicate the deciles to make
determinations such as this possible.
The slope and position of a linear regression between the quantiles gives a measure of the relative location and 
relative scale of the samples. If the median of the distribution plotted on the horizontal axis is 0, the intercept of a 
regression line is a measure of location, and the slope is a measure of scale. The distance between medians is another 
measure of relative location reflected in a Q–Q plot. The "probability plot correlation coefficient" is the correlation 
coefficient between the paired sample quantiles. The closer the correlation coefficient is to one, the closer the 
distributions are to being shifted, scaled versions of each other. For distributions with a single shape parameter, the 
probability plot correlation coefficient plot (PPCC plot) provides a method for estimating the shape parameter – one 
simply computes the correlation coefficient for different values of the shape parameter, and uses the one with the

https://en.wikipedia.org/w/index.php?title=Washington_State_Route_20
https://en.wikipedia.org/w/index.php?title=File%3AState_Route_20.png
https://en.wikipedia.org/w/index.php?title=Cumulative_distribution_function
https://en.wikipedia.org/w/index.php?title=Cumulative_distribution_function
https://en.wikipedia.org/w/index.php?title=Interpolation
https://en.wikipedia.org/w/index.php?title=Quantile_function
https://en.wikipedia.org/w/index.php?title=Parametric_equation
https://en.wikipedia.org/w/index.php?title=Statistical_dispersion
https://en.wikipedia.org/w/index.php?title=Statistical_dispersion
https://en.wikipedia.org/w/index.php?title=Pearson_product_moment_correlation_coefficient
https://en.wikipedia.org/w/index.php?title=Pearson_product_moment_correlation_coefficient
https://en.wikipedia.org/w/index.php?title=Probability_plot_correlation_coefficient_plot


QQ plot 77

best fit, just as if one were comparing distributions of different types.
Another common use of Q–Q plots is to compare the distribution of a sample to a theoretical distribution, such as the
standard normal distribution N(0,1), as in a normal probability plot. As in the case when comparing two samples of
data, one orders the data (formally, computes the order statistics), then plots them against certain quantiles of the
theoretical distribution.

Plotting positions
The choice of quantiles from a theoretical distribution has occasioned much discussion. A natural choice, given a
sample of size n, is k / n for k = 1, ..., n, as these are the quantiles that the sampling distribution realizes.
Unfortunately, the last of these, n / n, corresponds to the 100th percentile – the maximum value of the theoretical
distribution, which is often infinite. To fix this, one may shift these over, using (k − 0.5) / n, or instead space the
points evenly in the uniform distribution, using k / (n + 1). This last one was suggested early on by Weibull, and
recently it has been argued to be the definitive position by Lasse Makkonen. The claimed unique status of this
estimator was rebutted by N.J. Cook.
For plotting positions, context matters. They are used for estimates of exceedance probabilities and other things as
well, and there are disputes about whether the Weibull plotting position is the right procedure for all uses. Many
other choices have been suggested, both formal and heuristic, based on theory or simulations relevant in context. The
following subsections discuss some of these.

Expected value of the order statistic
In using a normal probability plot, the quantiles one uses are the rankits, the quantile of the expected value of the
order statistic of a standard normal distribution.
More generally, Shapiro–Wilk test uses the expected values of the order statistics of the given distribution; the
resulting plot and line yields the generalized least squares estimate for location and scale (from the intercept and
slope of the fitted line).[] Although this is not too important for the normal distribution (the location and scale are
estimated by the mean and standard deviation, respectively), it can be useful for many other distributions.
However, this requires calculating the expected values of the order statistic, which may be difficult if the distribution
is not normal.

Median of the order statistics
Alternatively, one may use estimates of the median of the order statistics, which one can compute based on estimates
of the median of the order statistics of a uniform distribution and the quantile function of the distribution; this was
suggested by (Filliben 1975).
This can be easily generated for any distribution for which the quantile function can be computed, but conversely the
resulting estimates of location and scale are no longer precisely the least squares estimates, though these only differ
significantly for n small.
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Heuristics
For the quantiles of the comparison distribution typically the formula k/(n + 1) is used. Several different formulas
have been used or proposed as symmetrical plotting positions. Such formulas have the form (k − a)/(n + 1 − 2a) for
some value of a in the range from 0 to 1/2, which gives a range between k/(n + 1) and (k − 1/2)/n.
Other expressions include:
• (k − 0.3) / (n + 0.4).
• (k − 0.3175) / (n + 0.365).[2]

• (k − 0.326) / (n + 0.348).[3]

• (k − ⅓) / (n + ⅓).[4]

• (k − 0.375) / (n + 0.25).[5]

• (k − 0.4) / (n + 0.2).
• (k − 0.44) / (n + 0.12).[6]

• (k − 0.567) / (n − 0.134).
• (k − 1) / (n − 1).[7]

For large sample size, n, there is little difference between these various expressions.

Filliben's estimate
The order statistic medians are the medians of the order statistics of the distribution. These can be expressed in terms
of the quantile function and the order statistic medians for the continuous uniform distribution by:

where U(i) are the uniform order statistic medians and G is the quantile function for the desired distribution. The
quantile function is the inverse of the cumulative distribution function (probability that X is less than or equal to
some value). That is, given a probability, we want the corresponding quantile of the cumulative distribution function.
James J. Filliben (Filliben 1975) uses the following estimates for the uniform order statistic medians:

The reason for this estimate is that the order statistic medians do not have a simple form.

Notes
[1][1] Gnanadesikan (1977) p199.
[2] Engineering Statistics Handbook: Normal Probability Plot (http:/ / www. itl. nist. gov/ div898/ handbook/ eda/ section3/ normprpl. htm) –

Note that this also uses a different expression for the first & last points. (http:/ / engineering. tufts. edu/ cee/ people/ vogel/ publications/
probability1986. pdf) cites the original work by . This expression is an estimate of the medians of U(k).

[3] Distribution free plotting position, Yu & Huang (http:/ / cat. inist. fr/ ?aModele=afficheN& cpsidt=14151257)
[4] A simple (and easy to remember) formula for plotting positions; used in BMDP statistical package.
[5] This is ’s earlier approximation and is the expression used in MINITAB.
[6] This plotting position was used by Irving I. Gringorten () to plot points in tests for the Gumbel distribution.
[7] Used by , these plotting points are equal to the modes of U(k).
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Ternary plot

Flammability diagram for methane

A ternary plot, ternary graph, triangle plot, simplex
plot, or de Finetti diagram is a barycentric plot on
three variables which sum to a constant. It graphically
depicts the ratios of the three variables as positions in
an equilateral triangle. It is used in physical chemistry,
petrology, mineralogy, metallurgy, and other physical
sciences to show the compositions of systems
composed of three species. In population genetics, it is
often called a Gibbs triangle or a de Finetti diagram. In
game theory, it is often called a simplex plot.[citation

needed]
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Approximate colours of Ag–Au–Cu alloys in jewellery
making

In a ternary plot, the proportions of the three variables a, b, and c
must sum to some constant, K. Usually, this constant is
represented as 1.0 or 100%. Because a + b + c = K for all
substances being graphed, any one variable is not independent of
the others, so only two variables must be known to find a sample's
point on the graph: for instance, c must be equal to K − a − b.
Because the three proportions cannot vary independently - there
are only two degrees of freedom - it is possible to graph the
intersection of all three variables in only two dimensions.[citation

needed]

Reading values on the ternary plot

The advantage of using a ternary plot for depicting compositions is
that three variables can be conveniently plotted in a two-dimensional graph. Ternary plots can also be used to create
phase diagrams by outlining the composition regions on the plot where different phases exist.
Every point on a ternary plot represents a different composition of the three components. There are three common
methods used to determine the ratios of the three species in the composition. The first method is an estimation based
upon the phase diagram grid. The concentration of each species is 100% (pure phase) in its corner of the triangle and
0% at the line opposite it. The percentage of a specific species decreases linearly with increasing distance from this
corner, as seen in figures 3–8. By drawing parallel lines at regular intervals between the zero line and the corner (as
seen in the images), fine divisions can be established for easy estimation of the content of a species. For a given
point, the fraction of each of the three materials in the composition can be determined by the first.
For phase diagrams that do not possess grid lines, the easiest way to determine the composition is to set the altitude
of the triangle to 100% and determine the shortest distances from the point of interest to each of the three sides. The
distances (the ratios of the distances to the total height of 100%) give the content of each of the species, as shown in
figure 1.
The third method is based upon a larger number of measurements, but does not require the drawing of perpendicular
lines. Straight lines are drawn from each corner, through the point of interest, to the corresponding side of the
triangle. The lengths of these lines, as well as the lengths of the segments between the point and the corresponding
sides, are measured individually. Ratios can then be determined by dividing these segments by the entire
corresponding line as shown in the figure 2. (The sum of the ratios should add to 1).

Figure 1. Altitude method Figure 2. Intersection method Figure 3. An example ternary
diagram, without any points

plotted.

Figure 4. An example ternary
diagram, showing increments

along the first axis.
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Figure 5. An example ternary
diagram, showing increments

along the second axis.

Figure 6. An example ternary
diagram, showing increments

along the third axis.

Figure 7. Empty diagram Figure 8. Empty diagram
(alternative axis)

SVG

Derivation from Cartesian coordinates

Derivation of a ternary plot from Cartesian coordinates

Figure (1) shows an oblique projection
of point P(a,b,c) in a 3-dimensional
Cartesian space with axes a, b and c,
respectively.

If a + b + c = K (a positive constant), P
is restricted to a plane containing
A(K,0,0), B(0,K,0) and C(0,0,K). If a,
b and c each cannot be negative, P is restricted to the triangle bounded by A, B and C, as in (2).

In (3), the axes are rotated to give an isometric view. The triangle, viewed face-on, appears equilateral.
In (4), the distances of P from lines BC, AC and AB are denoted by a' , b' and c' , respectively.
For any line l = s + t n̂ in vector form (n̂ is a unit vector) and a point p, the perpendicular distance from p to l is

.

In this case, point P is at .

Line BC has and .

Using the perpendicular distance formula,
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Substituting K = a + b + c,

.

Similar calculation on lines AC and AB gives

and .

This shows that the distance of the point from the respective lines is linearly proportional to the original values a, b
and c.[1]

Plotting a ternary plot
Cartesian coordinates are useful for plotting points in the triangle. Consider an equilateral ternary plot where

is placed at and at . Then is , and the

triple is 

Example
This example shows how this works for a hypothetical set of three soil samples:

Sample
#

Organic
matter

Clay Sand Notes

Sample
1

80% 10% 10% Because organic matter and clay make up 90% of this sample, the proportion of sand must be 10%.

Sample
2

50% 40% 10% The proportion of sand is 10% in this sample too, but the proportions of organic matter and clay are
different.

Sample
3

10% 40% 50% This sample has the same proportion of clay as in Sample 2 does, but because it has a smaller proportion of
organic matter, the proportion of sand must be larger, because all samples' proportions must sum to 100%.
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Plotting the points

Plotting a point: finding the first
intersection.

Plotting a point: finding the
second intersection.

Plotting a point: the "third"
intersection is already found, as it
is mathematically dependent on

the first two.

Showing points and intersection
lines.

Showing only the points.

Software
Here is a list of software that help enable the creation of ternary plots
•• JMP
•• Origin
•• R
•• Veusz

References
Vaughan, Will (September 5, 2010). "Ternary plots" [2]. Retrieved September 7, 2010.
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Distributions

Normal distribution

Normal

Probability density function

The red curve is the standard normal distribution

Cumulative distribution function

Notation

Parameters μ ∈ R — mean (location)
σ2 > 0 — variance (squared scale)

Support x ∈ R

pdf

CDF

Mean μ

Median μ

Mode μ

Variance

Skewness 0

Ex. kurtosis 0

Entropy

MGF

CF
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Fisher information

In probability theory, the normal (or Gaussian) distribution is a very commonly occurring continuous probability
distribution—a function that tells the probability that an observation in some context will fall between any two real
numbers. For example, the distribution of grades on a test administered to many people is normally distributed.
Normal distributions are extremely important in statistics and are often used in the natural and social sciences for
real-valued random variables whose distributions are not known.[1]

The normal distribution is immensely useful because of the central limit theorem, which states that, under mild
conditions, the mean of many random variables independently drawn from the same distribution is distributed
approximately normally, irrespective of the form of the original distribution: physical quantities that are expected to
be the sum of many independent processes (such as measurement errors) often have a distribution very close to the
normal. Moreover, many results and methods (such as propagation of uncertainty and least squares parameter fitting)
can be derived analytically in explicit form when the relevant variables are normally distributed.
The Gaussian distribution is sometimes informally called the bell curve. However, many other distributions are
bell-shaped (such as Cauchy's, Student's, and logistic). The terms Gaussian function and Gaussian bell curve are
also ambiguous because they sometimes refer to multiples of the normal distribution that cannot be directly
interpreted in terms of probabilities.
A normal distribution is

The parameter μ in this definition is the mean or expectation of the distribution (and also its median and mode). The
parameter σ is its standard deviation; its variance is therefore σ 2. A random variable with a Gaussian distribution is
said to be normally distributed and is called a normal deviate.
If μ = 0 and σ = 1, the distribution is called the standard normal distribution or the unit normal distribution, and
a random variable with that distribution is a standard normal deviate.
The normal distribution is the only absolutely continuous distribution all of whose cumulants beyond the first two
(i.e., other than the mean and variance) are zero. It is also the continuous distribution with the maximum entropy for
a given mean and variance.
The normal distribution is a subclass of the elliptical distributions. The normal distribution is symmetric about its
mean, and is non-zero over the entire real line. As such it may not be a suitable model for variables that are
inherently positive or strongly skewed, such as the weight of a person or the price of a share. Such variables may be
better described by other distributions, such as the log-normal distribution or the Pareto distribution.
The value of the normal distribution is practically zero when the value x lies more than a few standard deviations
away from the mean. Therefore, it may not be an appropriate model when one expects a significant fraction of
outliers—values that lie many standard deviations away from the mean—and Least-squares and other statistical
inference methods that are optimal for normally distributed variables often become highly unreliable when applied to
such data. In those cases, assume a more heavy-tailed distribution and the appropriate robust statistical inference
methods.
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Definition

Standard normal distribution
The simplest case of a normal distribution is known as the standard normal distribution, described by this
probability density function:

The factor in this expression ensures that the total area under the curve ϕ(x) is equal to one[proof]. The 1/2 in
the exponent ensures that the distribution has unit variance (and therefore also unit standard deviation). This function
is symmetric around x=0, where it attains its maximum value ; and has inflection points at +1 and −1.

General normal distribution
Any normal distribution is a version of the standard normal distribution whose domain has been stretched by a factor
σ (the standard deviation) and then translated by μ (the mean value)

The probability density must be scaled by so that the integral is still 1.
If Z is a standard normal deviate, then X = Zσ + μ will have a normal distribution with expected value μ and standard
deviation σ. Conversely, if X is a general normal deviate, then Z = (X − μ)/σ will have a standard normal distribution.
Every normal distribution is the exponential of a quadratic function:

where a is negative and c is . In this form, the mean value μ is −b/a, and the variance σ2 is −1/(2a).
For the standard normal distribution, a is −1/2, b is zero, and c is .

Notation
The standard Gaussian distribution (with zero mean and unit variance) is often denoted with the Greek letter ϕ (phi).
The alternative form of the Greek phi letter, φ, is also used quite often.
The normal distribution is also often denoted by N(μ, σ2). Thus when a random variable X is distributed normally
with mean μ and variance σ2, we write

Alternative parametrizations
Some authors advocate using the precision τ as the parameter defining the width of the distribution, instead of the
deviation σ or the variance σ2. The precision is normally defined as the reciprocal of the variance, 1/σ2. The formula
for the distribution then becomes

This choice is claimed to have advantages in numerical computations when σ is very close to zero and simplify
formulas in some contexts, such as in the Bayesian inference of variables with multivariate normal distribution.
Occasionally, the precision τ is 1/σ, the reciprocal of the standard deviation; so that
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Alternative definitions
Authors may differ also on which normal distribution should be called the "standard" one. Gauss himself defined the
standard normal as having variance σ2 = 1/2, that is

Stephen Stigler goes even further, defining the standard normal with variance σ2 = 1/2π :

According to Stigler, this formulation is advantageous because of a much simpler and easier-to-remember formula,
the fact that the pdf has unit height at zero, and simple approximate formulas for the quantiles of the distribution.

Properties

Symmetries and derivatives
The normal distribution f(x), with any mean μ and any positive deviation σ, has the following properties:
• It is symmetric around the point x = μ, which is at the same time the mode, the median and the mean of the

distribution.
• It is unimodal: its first derivative is positive for x < μ, negative for x > μ, and zero only at x = μ.
• It has two inflection points (where the second derivative of f is zero and changes sign), located one standard

deviation away from the mean, namely at x = μ − σ and x = μ + σ.
• It is log-concave.
• It is infinitely differentiable, indeed supersmooth of order 2.
Furthermore, the standard normal distribution ϕ (with μ = 0 and σ = 1) also has the following properties:
• Its first derivative ϕ′(x) is −xϕ(x).
• Its second derivative ϕ′′(x) is (x2 − 1)ϕ(x)
• More generally, its n-th derivative ϕ(n)(x) is (-1)nHn(x)ϕ(x), where Hn is the Hermite polynomial of order n.

Moments
The plain and absolute moments of a variable X are the expected values of Xp and |X|p,respectively. If the expected
value μ of X is zero, these parameters are called central moments. Usually we are interested only in moments with
integer order p.
If X has a normal distribution, these moments exist and are finite for any p whose real part is greater than −1. For any
non-negative integer p, the plain central moments are

Here n!! denotes the double factorial, that is the product of every odd number from n to 1.
The central absolute moments coincide with plain moments for all even orders, but are nonzero for odd orders. For
any non-negative integer p,

The last formula is valid also for any non-integer p > −1.
When the mean μ is not zero, the plain and absolute moments can be expressed in terms of confluent hypergeometric
functions 1F1 and U.[citation needed]
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These expressions remain valid even if p is not integer. See also generalized Hermite polynomials.

Order Non-central moment Central moment

1 μ 0

2 μ2 + σ2 σ 2

3 μ3 + 3μσ2 0

4 μ4 + 6μ2σ2 + 3σ4 3σ 4

5 μ5 + 10μ3σ2 + 15μσ4 0

6 μ6 + 15μ4σ2 + 45μ2σ4 + 15σ6 15σ 6

7 μ7 + 21μ5σ2 + 105μ3σ4 + 105μσ6 0

8 μ8 + 28μ6σ2 + 210μ4σ4 + 420μ2σ6 + 105σ8 105σ 8

Fourier transform and characteristic function
The Fourier transform of a normal distribution f with mean μ and deviation σ is

where i is the imaginary unit. If the mean μ is zero, the first factor is 1, and the Fourier transform is also a normal
distribution on the frequency domain, with mean 0 and standard deviation 1/σ. In particular, the standard normal
distribution ϕ (with μ=0 and σ=1) is an eigenfunction of the Fourier transform.
In probability theory, the Fourier transform of the probability distribution of a real-valued random variable X is
called the characteristic function of that variable, and can be defined as the expected value of eitX, as a function of
the real variable t (the frequency parameter of the Fourier transform). This definition can be analytically extended to
a complex-value parameter t.

Moment and cumulant generating functions
The moment generating function of a real random variable X is the expected value of etX, as a function of the real
parameter t. For a normal distribution with mean μ and deviation σ, the moment generating function exists and is
equal to

The cumulant generating function is the logarithm of the moment generating function, namely

Since this is a quadratic polynomial in t, only the first two cumulants are nonzero, namely the mean μ and the
variance σ2.
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Cumulative distribution
The cumulative distribution function (CDF) of the standard normal distribution, usually denoted with the capital
Greek letter (phi), is the integral

Therefore here are some trivial results from area under bell curve -

and therefore 
In statistics one often uses the related error function, or erf(x), defined as the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the range ; that is

These integrals cannot be expressed in terms of elementary functions, and are often said to be special functions *.
They are closely related, namely

For a generic normal distribution f with mean μ and deviation σ, the cumulative distribution function is

The complement of the standard normal CDF, , is often called the Q-function, especially in
engineering texts. It gives the probability that the value of a standard normal random variable X will exceed x. Other
definitions of the Q-function, all of which are simple transformations of , are also used occasionally.
The graph of the standard normal CDF has 2-fold rotational symmetry around the point (0,1/2); that is,

. Its antiderivative (indefinite integral) is .

• The cumulative distribution function (CDF) of the standard normal distribution can be expand by Integration by
parts into a series:

Example of Pascal function to calculate CDF (sum of first 100 elements)

function CDF(x:extended):extended;

var value,sum:extended;

    i:integer;

begin

  sum:=x;

  value:=x;

  for i:=1 to 100 do

    begin

      value:=(value*x*x/(2*i+1));

      sum:=sum+value;

    end;
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  result:=0.5+(sum/sqrt(2*pi))*exp(-(x*x)/2);

end;

Standard deviation and tolerance intervals

Dark blue is less than one standard deviation away from the mean. For the normal
distribution, this accounts for about 68% of the set, while two standard deviations from
the mean (medium and dark blue) account for about 95%, and three standard deviations

(light, medium, and dark blue) account for about 99.7%.

About 68% of values drawn from a
normal distribution are within one
standard deviation σ away from the
mean; about 95% of the values lie
within two standard deviations; and
about 99.7% are within three standard
deviations. This fact is known as the
68-95-99.7 (empirical) rule, or the
3-sigma rule.

More precisely, the probability that a
normal deviate lies in the range μ − nσ
and μ + nσ is given by

To 12 decimal places, the values for n = 1, 2, ..., 6 are:[2]

n F(μ+nσ) − F(μ−nσ) i.e. 1 minus ... or 1 in ... OEIS

1 0.682689492137 0.317310507863 3.15148718753  A178647

2 0.954499736104 0.045500263896 21.9778945080  A110894

3 0.997300203937 0.002699796063 370.398347345

4 0.999936657516 0.000063342484 15787.1927673

5 0.999999426697 0.000000573303 1744277.89362

6 0.999999998027 0.000000001973 506797345.897

Quantile function
The quantile function of a distribution is the inverse of the cumulative distribution function. The quantile function of
the standard normal distribution is called the probit function, and can be expressed in terms of the inverse error
function:

For a normal random variable with mean μ and variance σ2, the quantile function is

The quantile of the standard normal distribution is commonly denoted as zp. These values are used in
hypothesis testing, construction of confidence intervals and Q-Q plots. A normal random variable X will exceed μ +
σzp with probability 1−p; and will lie outside the interval μ ± σzp with probability 2(1−p). In particular, the quantile
z0.975 is 1.96; therefore a normal random variable will lie outside the interval μ ± 1.96σ in only 5% of cases.
The following table gives the multiple n of σ such that X will lie in the range μ ± nσ with a specified probability p.
These values are useful to determine tolerance interval for sample averages and other statistical estimators with
normal (or asymptotically normal) distributions:[3]
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F(μ+nσ) − F(μ−nσ) n F(μ+nσ) − F(μ−nσ) n

0.80 1.281551565545 0.999 3.290526731492

0.90 1.644853626951 0.9999 3.890591886413

0.95 1.959963984540 0.99999 4.417173413469

0.98 2.326347874041 0.999999 4.891638475699

0.99 2.575829303549 0.9999999 5.326723886384

0.995 2.807033768344 0.99999999 5.730728868236

0.998 3.090232306168 0.999999999 6.109410204869

Zero-variance limit
In the limit when σ tends to zero, the probability density f(x) eventually tends to zero at any x ≠ μ, but grows without
limit if x = μ, while its integral remains equal to 1. Therefore, the normal distribution cannot be defined as an
ordinary function when σ = 0.
However, one can define the normal distribution with zero variance as a generalized function; specifically, as Dirac's
"delta function" δ translated by the mean μ, that is f(x) = δ(x−μ). Its CDF is then the Heaviside step function
translated by the mean μ, namely

The central limit theorem

As the number of discrete events increases, the function begins to
resemble a normal distribution

The central limit theorem states that under certain
(fairly common) conditions, the sum of many random
variables will have an approximately normal
distribution. More specifically, where X1, …, Xn are
independent and identically distributed random
variables with the same arbitrary distribution, zero
mean, and variance σ2; and Z is their mean scaled by

Then, as n increases, the probability distribution of Z
will tend to the normal distribution with zero mean and
variance σ2.

The theorem can be extended to variables Xi that are not independent and/or not identically distributed if certain
constraints are placed on the degree of dependence and the moments of the distributions.

Many test statistics, scores, and estimators encountered in practice contain sums of certain random variables in
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Comparison of probability density functions, p(k) for the sum of n
fair 6-sided dice to show their convergence to a normal distribution
with increasing n, in accordance to the central limit theorem. In the
bottom-right graph, smoothed profiles of the previous graphs are
rescaled, superimposed and compared with a normal distribution

(black curve).

them, and even more estimators can be represented as
sums of random variables through the use of influence
functions. The central limit theorem implies that those
statistical parameters will have asymptotically normal
distributions.

The central limit theorem also implies that certain
distributions can be approximated by the normal
distribution, for example:
• The binomial distribution B(n, p) is approximately

normal with mean np and variance np(1−p)) for
large n and for p not too close to zero or one.

• The Poisson distribution with parameter λ is
approximately normal with mean λ and variance λ,
for large values of λ.[4]

• The chi-squared distribution χ2(k) is approximately
normal with mean k and variance 2k, for large k.

• The Student's t-distribution t(ν) is approximately
normal with mean 0 and variance 1 when ν is large.

Whether these approximations are sufficiently accurate
depends on the purpose for which they are needed, and
the rate of convergence to the normal distribution. It is
typically the case that such approximations are less
accurate in the tails of the distribution.
A general upper bound for the approximation error in the central limit theorem is given by the Berry–Esseen
theorem, improvements of the approximation are given by the Edgeworth expansions.

Operations on normal deviates
The family of normal distributions is closed under linear transformations: if X is normally distributed with mean μ
and deviation σ, then the variable Y = aX + b, for any real numbers a and b, is also normally distributed, with mean
aμ + b and deviation aσ.
Also if X1 and X2 are two independent normal random variables, with means μ1, μ2 and standard deviations σ1, σ2,
then their sum X1 + X2 will also be normally distributed,[proof] with mean μ1 + μ2 and variance .
In particular, if X and Y are independent normal deviates with zero mean and variance σ2, then X + Y and X − Y are
also independent and normally distributed, with zero mean and variance 2σ2. This is a special case of the polarization
identity.
Also, if X1, X2 are two independent normal deviates with mean μ and deviation σ, and a, b are arbitrary real numbers,
then the variable

is also normally distributed with mean μ and deviation σ. It follows that the normal distribution is stable (with
exponent α = 2).
More generally, any linear combination of independent normal deviates is a normal deviate.
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Infinite divisibility and Cramér's theorem
For any positive integer n, any normal distribution with mean μ and variance σ2 is the distribution of the sum of n
independent normal deviates, each with mean μ/n and variance σ2/n. This property is called infinite divisibility.
Conversely, if X1 and X2 are independent random variables and their sum X1 + X2 has a normal distribution, then both
X1 and X2 must be normal deviates.
This result is known as Cramér's decomposition theorem, and is equivalent to saying that the convolution of two
distributions is normal if and only if both are normal. Cramér's theorem implies that a linear combination of
independent non-Gaussian variables will never have an exactly normal distribution, although it may approach it
arbitrarily close.

Bernstein's theorem
Bernstein's theorem states that if X and Y are independent and X + Y and X − Y are also independent, then both X and
Y must necessarily have normal distributions.[5]

More generally, if X1, ..., Xn are independent random variables, then two distinct linear combinations ∑akXk and
∑bkXk will be independent if and only if all Xk's are normal and ∑akbkσ 2
k = 0, where σ 2
k denotes the variance of Xk.

Other properties
1. If the characteristic function φX of some random variable X is of the form φX(t) = eQ(t), where Q(t) is a

polynomial, then the Marcinkiewicz theorem (named after Józef Marcinkiewicz) asserts that Q can be at most a
quadratic polynomial, and therefore X a normal random variable. The consequence of this result is that the normal
distribution is the only distribution with a finite number (two) of non-zero cumulants.

2. If X and Y are jointly normal and uncorrelated, then they are independent. The requirement that X and Y should be
jointly normal is essential, without it the property does not hold.[6][7][proof] For non-normal random variables
uncorrelatedness does not imply independence.

3. The Kullback–Leibler divergence of one normal distributions X1 ∼ N(μ1, σ2
1 )from another X2 ∼ N(μ2, σ2

2 )is
given by:[8]

The Hellinger distance between the same distributions is equal to

4. The Fisher information matrix for a normal distribution is diagonal and takes the form

5. Normal distributions belongs to an exponential family with natural parameters and , and natural
statistics x and x2. The dual, expectation parameters for normal distribution are η1 = μ and η2 = μ2 + σ2.

6. The conjugate prior of the mean of a normal distribution is another normal distribution. Specifically, if x1, …, xn
are iid N(μ, σ2) and the prior is μ ~ N(μ0, σ2
0), then the posterior distribution for the estimator of μ will be
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7. Of all probability distributions over the reals with mean μ and variance σ2, the normal distribution N(μ, σ2) is the
one with the maximum entropy.

8. The family of normal distributions forms a manifold with constant curvature −1. The same family is flat with
respect to the (±1)-connections ∇(e) and ∇(m).

Related distributions

Operations on a single random variable
If X is distributed normally with mean μ and variance σ2, then
• The exponential of X is distributed log-normally: eX ~ ln(N (μ, σ2)).
• The absolute value of X has folded normal distribution: |X| ~ Nf (μ, σ2). If μ = 0 this is known as the half-normal

distribution.
• The square of X/σ has the noncentral chi-squared distribution with one degree of freedom: X2/σ2 ~ χ2

1(μ2/σ2). If μ
= 0, the distribution is called simply chi-squared.

• The distribution of the variable X restricted to an interval [a, b] is called the truncated normal distribution.
• (X − μ)−2 has a Lévy distribution with location 0 and scale σ−2.

Combination of two independent random variables
If X1 and X2 are two independent standard normal random variables with mean 0 and variance 1, then
• Their sum and difference is distributed normally with mean zero and variance two: X1 ± X2 ∼ N(0, 2).
• Their product Z = X1·X2 follows the "product-normal" distribution[9] with density function fZ(z) = π−1K0(|z|),

where K0 is the modified Bessel function of the second kind. This distribution is symmetric around zero,
unbounded at z = 0, and has the characteristic function φZ(t) = (1 + t 2)−1/2.

• Their ratio follows the standard Cauchy distribution: X1 ÷ X2 ∼ Cauchy(0, 1).
• Their Euclidean norm has the Rayleigh distribution.

Combination of two or more independent random variables
• If X1, X2, …, Xn are independent standard normal random variables, then the sum of their squares has the

chi-squared distribution with n degrees of freedom

.
• If X1, X2, …, Xn are independent normally distributed random variables with means μ and variances σ2, then their

sample mean is independent from the sample standard deviation, which can be demonstrated using Basu's
theorem or Cochran's theorem. The ratio of these two quantities will have the Student's t-distribution with n − 1
degrees of freedom:

• If X1, …, Xn, Y1, …, Ym are independent standard normal random variables, then the ratio of their normalized
sums of squares will have the F-distribution with (n, m) degrees of freedom:
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Operations on the density function
The split normal distribution is most directly defined in terms of joining scaled sections of the density functions of
different normal distributions and rescaling the density to integrate to one. The truncated normal distribution results
from rescaling a section of a single density function.

Extensions
The notion of normal distribution, being one of the most important distributions in probability theory, has been
extended far beyond the standard framework of the univariate (that is one-dimensional) case (Case 1). All these
extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists.
• The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X

∈ Rk is multivariate-normally distributed if any linear combination of its components ∑k

j=1aj Xj has a (univariate) normal distribution. The variance of X is a k×k symmetric positive-definite matrix V.
The multivariate normal distribution is a special case of the elliptical distributions. As such, its iso-density loci in
the k = 2 case are ellipses and in the case of arbitrary k are ellipsoids.

• Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0
• Complex normal distribution deals with the complex normal vectors. A complex vector X ∈ Ck is said to be

normal if both its real and imaginary components jointly possess a 2k-dimensional multivariate normal
distribution. The variance-covariance structure of X is described by two matrices: the variance matrix Γ, and the
relation matrix C.

• Matrix normal distribution describes the case of normally distributed matrices.
• Gaussian processes are the normally distributed stochastic processes. These can be viewed as elements of some

infinite-dimensional Hilbert space H, and thus are the analogues of multivariate normal vectors for the case k = ∞.
A random element h ∈ H is said to be normal if for any constant a ∈ H the scalar product (a, h) has a (univariate)
normal distribution. The variance structure of such Gaussian random element can be described in terms of the
linear covariance operator K: H → H. Several Gaussian processes became popular enough to have their own
names:
• Brownian motion,
• Brownian bridge,
• Ornstein–Uhlenbeck process.

• Gaussian q-distribution is an abstract mathematical construction that represents a "q-analogue" of the normal
distribution.

• the q-Gaussian is an analogue of the Gaussian distribution, in the sense that it maximises the Tsallis entropy, and
is one type of Tsallis distribution. Note that this distribution is different from the Gaussian q-distribution above.

One of the main practical uses of the Gaussian law is to model the empirical distributions of many different random
variables encountered in practice. In such case a possible extension would be a richer family of distributions, having
more than two parameters and therefore being able to fit the empirical distribution more accurately. The examples of
such extensions are:
• Pearson distribution— a four-parametric family of probability distributions that extend the normal law to include

different skewness and kurtosis values.
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Normality tests
Normality tests assess the likelihood that the given data set {x1, …, xn} comes from a normal distribution. Typically
the null hypothesis H0 is that the observations are distributed normally with unspecified mean μ and variance σ2,
versus the alternative Ha that the distribution is arbitrary. Many tests (over 40) have been devised for this problem,
the more prominent of them are outlined below:
• "Visual" tests are more intuitively appealing but subjective at the same time, as they rely on informal human

judgement to accept or reject the null hypothesis.
• Q-Q plot— is a plot of the sorted values from the data set against the expected values of the corresponding

quantiles from the standard normal distribution. That is, it's a plot of point of the form (Φ−1(pk), x(k)), where
plotting points pk are equal to pk = (k − α)/(n + 1 − 2α) and α is an adjustment constant, which can be anything
between 0 and 1. If the null hypothesis is true, the plotted points should approximately lie on a straight line.

• P-P plot— similar to the Q-Q plot, but used much less frequently. This method consists of plotting the points
(Φ(z(k)), pk), where . For normally distributed data this plot should lie on a 45° line between
(0, 0) and (1, 1).

• Shapiro-Wilk test employs the fact that the line in the Q-Q plot has the slope of σ. The test compares the least
squares estimate of that slope with the value of the sample variance, and rejects the null hypothesis if these two
quantities differ significantly.

• Normal probability plot (rankit plot)
• Moment tests:

•• D'Agostino's K-squared test
• Jarque–Bera test

• Empirical distribution function tests:
• Lilliefors test (an adaptation of the Kolmogorov–Smirnov test)
• Anderson–Darling test

Estimation of parameters
It is often the case that we don't know the parameters of the normal distribution, but instead want to estimate them.
That is, having a sample (x1, …, xn) from a normal N(μ, σ2) population we would like to learn the approximate
values of parameters μ and σ2. The standard approach to this problem is the maximum likelihood method, which
requires maximization of the log-likelihood function:

Taking derivatives with respect to μ and σ2 and solving the resulting system of first order conditions yields the
maximum likelihood estimates:

Estimator is called the sample mean, since it is the arithmetic mean of all observations. The statistic is complete
and sufficient for μ, and therefore by the Lehmann–Scheffé theorem, is the uniformly minimum variance unbiased
(UMVU) estimator. In finite samples it is distributed normally:

The variance of this estimator is equal to the μμ-element of the inverse Fisher information matrix . This implies 
that the estimator is finite-sample efficient. Of practical importance is the fact that the standard error of is 
proportional to , that is, if one wishes to decrease the standard error by a factor of 10, one must increase the 
number of points in the sample by a factor of 100. This fact is widely used in determining sample sizes for opinion
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polls and the number of trials in Monte Carlo simulations.
From the standpoint of the asymptotic theory, is consistent, that is, it converges in probability to μ as n → ∞. The
estimator is also asymptotically normal, which is a simple corollary of the fact that it is normal in finite samples:

The estimator is called the sample variance, since it is the variance of the sample (x1, …, xn). In practice, another
estimator is often used instead of the . This other estimator is denoted s2, and is also called the sample variance,
which represents a certain ambiguity in terminology; its square root s is called the sample standard deviation. The
estimator s2 differs from by having (n − 1) instead of n in the denominator (the so-called Bessel's correction):

The difference between s2 and becomes negligibly small for large n's. In finite samples however, the motivation
behind the use of s2 is that it is an unbiased estimator of the underlying parameter σ2, whereas is biased. Also, by
the Lehmann–Scheffé theorem the estimator s2 is uniformly minimum variance unbiased (UMVU), which makes it
the "best" estimator among all unbiased ones. However it can be shown that the biased estimator is "better" than
the s2 in terms of the mean squared error (MSE) criterion. In finite samples both s2 and have scaled chi-squared
distribution with (n − 1) degrees of freedom:

The first of these expressions shows that the variance of s2 is equal to 2σ4/(n−1), which is slightly greater than the
σσ-element of the inverse Fisher information matrix . Thus, s2 is not an efficient estimator for σ2, and moreover,
since s2 is UMVU, we can conclude that the finite-sample efficient estimator for σ2 does not exist.
Applying the asymptotic theory, both estimators s2 and are consistent, that is they converge in probability to σ2 as
the sample size n → ∞. The two estimators are also both asymptotically normal:

In particular, both estimators are asymptotically efficient for σ2.
By Cochran's theorem, for normal distributions the sample mean and the sample variance s2 are independent,
which means there can be no gain in considering their joint distribution. There is also a reverse theorem: if in a
sample the sample mean and sample variance are independent, then the sample must have come from the normal
distribution. The independence between and s can be employed to construct the so-called t-statistic:

This quantity t has the Student's t-distribution with (n − 1) degrees of freedom, and it is an ancillary statistic
(independent of the value of the parameters). Inverting the distribution of this t-statistics will allow us to construct
the confidence interval for μ; similarly, inverting the χ2 distribution of the statistic s2 will give us the confidence
interval for σ2:

where tk,p and χ 2 
k,p are the pth quantiles of the t- and χ2-distributions respectively. These confidence intervals are of the level 1 − α, 
meaning that the true values μ and σ2 fall outside of these intervals with probability α. In practice people usually take 
α = 5%, resulting in the 95% confidence intervals. The approximate formulas in the display above were derived from
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the asymptotic distributions of and s2. The approximate formulas become valid for large values of n, and are more
convenient for the manual calculation since the standard normal quantiles zα/2 do not depend on n. In particular, the
most popular value of α = 5%, results in |z0.025| = 1.96.

Bayesian analysis of the normal distribution
Bayesian analysis of normally distributed data is complicated by the many different possibilities that may be
considered:
•• Either the mean, or the variance, or neither, may be considered a fixed quantity.
• When the variance is unknown, analysis may be done directly in terms of the variance, or in terms of the

precision, the reciprocal of the variance. The reason for expressing the formulas in terms of precision is that the
analysis of most cases is simplified.

• Both univariate and multivariate cases need to be considered.
• Either conjugate or improper prior distributions may be placed on the unknown variables.
• An additional set of cases occurs in Bayesian linear regression, where in the basic model the data is assumed to be

normally distributed, and normal priors are placed on the regression coefficients. The resulting analysis is similar
to the basic cases of independent identically distributed data, but more complex.

The formulas for the non-linear-regression cases are summarized in the conjugate prior article.

The sum of two quadratics

Scalar form

The following auxiliary formula is useful for simplifying the posterior update equations, which otherwise become
fairly tedious.

This equation rewrites the sum of two quadratics in x by expanding the squares, grouping the terms in x, and
completing the square. Note the following about the complex constant factors attached to some of the terms:

1. The factor has the form of a weighted average of y and z.

2. This shows that this factor can be thought of as resulting from a

situation where the reciprocals of quantities a and b add directly, so to combine a and b themselves, it's necessary
to reciprocate, add, and reciprocate the result again to get back into the original units. This is exactly the sort of
operation performed by the harmonic mean, so it is not surprising that is one-half the harmonic mean of a

and b.
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Vector form

A similar formula can be written for the sum of two vector quadratics: If x, y, z are vectors of length k, and A and B
are symmetric, invertible matrices of size , then

where

Note that the form x′ A x is called a quadratic form and is a scalar:

In other words, it sums up all possible combinations of products of pairs of elements from x, with a separate
coefficient for each. In addition, since , only the sum matters for any off-diagonal
elements of A, and there is no loss of generality in assuming that A is symmetric. Furthermore, if A is symmetric,
then the form .

The sum of differences from the mean
Another useful formula is as follows:

where 

With known variance

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with known variance σ2, the conjugate prior distribution is also normally distributed.
This can be shown more easily by rewriting the variance as the precision, i.e. using τ = 1/σ2. Then if 
and we proceed as follows.
First, the likelihood function is (using the formula above for the sum of differences from the mean):

Then, we proceed as follows:

https://en.wikipedia.org/w/index.php?title=Symmetric_matrix
https://en.wikipedia.org/w/index.php?title=Invertible_matrices
https://en.wikipedia.org/w/index.php?title=Quadratic_form
https://en.wikipedia.org/w/index.php?title=Scalar_%28mathematics%29
https://en.wikipedia.org/w/index.php?title=Symmetric_matrix
https://en.wikipedia.org/w/index.php?title=I.i.d.
https://en.wikipedia.org/w/index.php?title=Conjugate_prior
https://en.wikipedia.org/w/index.php?title=Precision_%28statistics%29
https://en.wikipedia.org/w/index.php?title=Likelihood_function


Normal distribution 100

In the above derivation, we used the formula above for the sum of two quadratics and eliminated all constant factors
not involving μ. The result is the kernel of a normal distribution, with mean and precision ,

i.e.

This can be written as a set of Bayesian update equations for the posterior parameters in terms of the prior
parameters:

That is, to combine n data points with total precision of nτ (or equivalently, total variance of n/σ2) and mean of
values , derive a new total precision simply by adding the total precision of the data to the prior total precision,
and form a new mean through a precision-weighted average, i.e. a weighted average of the data mean and the prior
mean, each weighted by the associated total precision. This makes logical sense if the precision is thought of as
indicating the certainty of the observations: In the distribution of the posterior mean, each of the input components is
weighted by its certainty, and the certainty of this distribution is the sum of the individual certainties. (For the
intuition of this, compare the expression "the whole is (or is not) greater than the sum of its parts". In addition,
consider that the knowledge of the posterior comes from a combination of the knowledge of the prior and likelihood,
so it makes sense that we are more certain of it than of either of its components.)
The above formula reveals why it is more convenient to do Bayesian analysis of conjugate priors for the normal
distribution in terms of the precision. The posterior precision is simply the sum of the prior and likelihood precisions,
and the posterior mean is computed through a precision-weighted average, as described above. The same formulas
can be written in terms of variance by reciprocating all the precisions, yielding the more ugly formulas
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With known mean

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with known mean μ, the conjugate prior of the variance has an inverse gamma distribution or a scaled inverse
chi-squared distribution. The two are equivalent except for having different parameterizations. Although the inverse
gamma is more commonly used, we use the scaled inverse chi-squared for the sake of convenience. The prior for σ2

is as follows:

The likelihood function from above, written in terms of the variance, is:

where

Then:

The above is also a scaled inverse chi-squared distribution where

or equivalently
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Reparameterizing in terms of an inverse gamma distribution, the result is:

With unknown mean and unknown variance

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with unknown mean μ and unknown variance σ2, a combined (multivariate) conjugate prior is placed over the mean
and variance, consisting of a normal-inverse-gamma distribution. Logically, this originates as follows:
1. From the analysis of the case with unknown mean but known variance, we see that the update equations involve

sufficient statistics computed from the data consisting of the mean of the data points and the total variance of the
data points, computed in turn from the known variance divided by the number of data points.

2. From the analysis of the case with unknown variance but known mean, we see that the update equations involve
sufficient statistics over the data consisting of the number of data points and sum of squared deviations.

3.3. Keep in mind that the posterior update values serve as the prior distribution when further data is handled. Thus,
we should logically think of our priors in terms of the sufficient statistics just described, with the same semantics
kept in mind as much as possible.

4.4. To handle the case where both mean and variance are unknown, we could place independent priors over the mean
and variance, with fixed estimates of the average mean, total variance, number of data points used to compute the
variance prior, and sum of squared deviations. Note however that in reality, the total variance of the mean
depends on the unknown variance, and the sum of squared deviations that goes into the variance prior (appears to)
depend on the unknown mean. In practice, the latter dependence is relatively unimportant: Shifting the actual
mean shifts the generated points by an equal amount, and on average the squared deviations will remain the same.
This is not the case, however, with the total variance of the mean: As the unknown variance increases, the total
variance of the mean will increase proportionately, and we would like to capture this dependence.

5. This suggests that we create a conditional prior of the mean on the unknown variance, with a hyperparameter
specifying the mean of the pseudo-observations associated with the prior, and another parameter specifying the
number of pseudo-observations. This number serves as a scaling parameter on the variance, making it possible to
control the overall variance of the mean relative to the actual variance parameter. The prior for the variance also
has two hyperparameters, one specifying the sum of squared deviations of the pseudo-observations associated
with the prior, and another specifying once again the number of pseudo-observations. Note that each of the priors
has a hyperparameter specifying the number of pseudo-observations, and in each case this controls the relative
variance of that prior. These are given as two separate hyperparameters so that the variance (aka the confidence)
of the two priors can be controlled separately.

6. This leads immediately to the normal-inverse-gamma distribution, which is the product of the two distributions
just defined, with conjugate priors used (an inverse gamma distribution over the variance, and a normal
distribution over the mean, conditional on the variance) and with the same four parameters just defined.

The priors are normally defined as follows:

The update equations can be derived, and look as follows:
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The respective numbers of pseudo-observations add the number of actual observations to them. The new mean
hyperparameter is once again a weighted average, this time weighted by the relative numbers of observations.
Finally, the update for is similar to the case with known mean, but in this case the sum of squared deviations
is taken with respect to the observed data mean rather than the true mean, and as a result a new "interaction term"
needs to be added to take care of the additional error source stemming from the deviation between prior and data
mean.
Proof is as follows.

Occurrence
The occurrence of normal distribution in practical problems can be loosely classified into three categories:
1.1. Exactly normal distributions;
2. Approximately normal laws, for example when such approximation is justified by the central limit theorem; and
3. Distributions modeled as normal – the normal distribution being the distribution with maximum entropy for a

given mean and variance.

Exact normality

The ground state of a quantum harmonic
oscillator has the Gaussian distribution.

Certain quantities in physics are distributed normally, as was first
demonstrated by James Clerk Maxwell. Examples of such quantities
are:

• Velocities of the molecules in the ideal gas. More generally,
velocities of the particles in any system in thermodynamic
equilibrium will have normal distribution, due to the maximum
entropy principle.

• Probability density function of a ground state in a quantum harmonic
oscillator.

• The position of a particle that experiences diffusion. If initially the
particle is located at a specific point (that is its probability
distribution is the dirac delta function), then after time t its location
is described by a normal distribution with variance t, which satisfies the diffusion equation ∂/∂t f(x,t) = 1/2 ∂2/∂x2

f(x,t). If the initial location is given by a certain density function g(x), then the density at time t is the convolution
of g and the normal PDF.
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Approximate normality
Approximately normal distributions occur in many situations, as explained by the central limit theorem. When the
outcome is produced by many small effects acting additively and independently, its distribution will be close to
normal. The normal approximation will not be valid if the effects act multiplicatively (instead of additively), or if
there is a single external influence that has a considerably larger magnitude than the rest of the effects.
• In counting problems, where the central limit theorem includes a discrete-to-continuum approximation and where

infinitely divisible and decomposable distributions are involved, such as
• Binomial random variables, associated with binary response variables;
• Poisson random variables, associated with rare events;

• Thermal light has a Bose–Einstein distribution on very short time scales, and a normal distribution on longer
timescales due to the central limit theorem.

Assumed normality

Histogram of sepal widths for Iris versicolor
from Fisher's Iris flower data set, with

superimposed best-fitting normal distribution.

I can only recognize the occurrence of the normal curve – the
Laplacian curve of errors – as a very abnormal phenomenon. It
is roughly approximated to in certain distributions; for this
reason, and on account for its beautiful simplicity, we may,
perhaps, use it as a first approximation, particularly in theoretical
investigations.

—Pearson (1901)
There are statistical methods to empirically test that assumption, see
the above Normality tests section.

• In biology, the logarithm of various variables tend to have a normal
distribution, that is, they tend to have a log-normal distribution
(after separation on male/female subpopulations), with examples including:

•• Measures of size of living tissue (length, height, skin area, weight);
• The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth;

presumably the thickness of tree bark also falls under this category;
•• Certain physiological measurements, such as blood pressure of adult humans.

• In finance, in particular the Black–Scholes model, changes in the logarithm of exchange rates, price indices, and
stock market indices are assumed normal (these variables behave like compound interest, not like simple interest,
and so are multiplicative). Some mathematicians such as Benoît Mandelbrot have argued that log-Levy
distributions, which possesses heavy tails would be a more appropriate model, in particular for the analysis for
stock market crashes.

• Measurement errors in physical experiments are often modeled by a normal distribution. This use of a normal
distribution does not imply that one is assuming the measurement errors are normally distributed, rather using the
normal distribution produces the most conservative predictions possible given only knowledge about the mean
and variance of the errors.
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Fitted cumulative normal distribution to October rainfalls,
see distribution fitting

• In standardized testing, results can be made to have a
normal distribution by either selecting the number and
difficulty of questions (as in the IQ test) or transforming
the raw test scores into "output" scores by fitting them to
the normal distribution. For example, the SAT's traditional
range of 200–800 is based on a normal distribution with a
mean of 500 and a standard deviation of 100.

• Many scores are derived from the normal distribution,
including percentile ranks ("percentiles" or "quantiles"),
normal curve equivalents, stanines, z-scores, and T-scores.
Additionally, some behavioral statistical procedures
assume that scores are normally distributed; for example,
t-tests and ANOVAs. Bell curve grading assigns relative
grades based on a normal distribution of scores.

• In hydrology the distribution of long duration river discharge or rainfall, e.g. monthly and yearly totals, is often
thought to be practically normal according to the central limit theorem. The blue picture illustrates an example of
fitting the normal distribution to ranked October rainfalls showing the 90% confidence belt based on the binomial
distribution. The rainfall data are represented by plotting positions as part of the cumulative frequency analysis.

Generating values from normal distribution

The bean machine, a device invented by Francis Galton, can be
called the first generator of normal random variables. This machine

consists of a vertical board with interleaved rows of pins. Small balls
are dropped from the top and then bounce randomly left or right as
they hit the pins. The balls are collected into bins at the bottom and

settle down into a pattern resembling the Gaussian curve.

In computer simulations, especially in applications of
the Monte-Carlo method, it is often desirable to
generate values that are normally distributed. The
algorithms listed below all generate the standard
normal deviates, since a N(μ, σ2
) can be generated as X = μ + σZ, where Z is standard
normal. All these algorithms rely on the availability of
a random number generator U capable of producing
uniform random variates.

• The most straightforward method is based on the
probability integral transform property: if U is
distributed uniformly on (0,1), then Φ−1(U) will
have the standard normal distribution. The drawback
of this method is that it relies on calculation of the
probit function Φ−1, which cannot be done
analytically. Some approximate methods are
described in Hart (1968) and in the erf article.
Wichura gives a fast algorithm for computing this
function to 16 decimal places, which is used by R to
compute random variates of the normal distribution.

• An easy to program approximate approach, that relies on the central limit theorem, is as follows: generate 12
uniform U(0,1) deviates, add them all up, and subtract 6 – the resulting random variable will have approximately
standard normal distribution. In truth, the distribution will be Irwin–Hall, which is a 12-section eleventh-order
polynomial approximation to the normal distribution. This random deviate will have a limited range of (−6, 6).
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• The Box–Muller method uses two independent random numbers U and V distributed uniformly on (0,1). Then the
two random variables X and Y

will both have the standard normal distribution, and will be independent. This formulation arises because for a
bivariate normal random vector (X Y) the squared norm X2 + Y2 will have the chi-squared distribution with two
degrees of freedom, which is an easily generated exponential random variable corresponding to the quantity
−2ln(U) in these equations; and the angle is distributed uniformly around the circle, chosen by the random
variable V.

• Marsaglia polar method is a modification of the Box–Muller method algorithm, which does not require
computation of functions sin() and cos(). In this method U and V are drawn from the uniform (−1,1)
distribution, and then S = U2 + V2 is computed. If S is greater or equal to one then the method starts over,
otherwise two quantities

are returned. Again, X and Y will be independent and standard normally distributed.
•• The Ratio method is a rejection method. The algorithm proceeds as follows:

• Generate two independent uniform deviates U and V;
• Compute X = √8/e (V − 0.5)/U;
• Optional: if X2 ≤ 5 − 4e1/4U then accept X and terminate algorithm;
• Optional: if X2 ≥ 4e−1.35/U + 1.4 then reject X and start over from step 1;
• If X2 ≤ −4 lnU then accept X, otherwise start over the algorithm.

• The ziggurat algorithm is faster than the Box–Muller transform and still exact. In about 97% of all cases it uses
only two random numbers, one random integer and one random uniform, one multiplication and an if-test. Only in
3% of the cases, where the combination of those two falls outside the "core of the ziggurat" (a kind of rejection
sampling using logarithms), do exponentials and more uniform random numbers have to be employed.

• There is also some investigation into the connection between the fast Hadamard transform and the normal
distribution, since the transform employs just addition and subtraction and by the central limit theorem random
numbers from almost any distribution will be transformed into the normal distribution. In this regard a series of
Hadamard transforms can be combined with random permutations to turn arbitrary data sets into a normally
distributed data.

Numerical approximations for the normal CDF
The standard normal CDF is widely used in scientific and statistical computing. The values Φ(x) may be
approximated very accurately by a variety of methods, such as numerical integration, Taylor series, asymptotic series
and continued fractions. Different approximations are used depending on the desired level of accuracy.
• Zelen & Severo (1964) give the approximation for Φ(x) for x > 0 with the absolute error |ε(x)| < 7.5·10−8

(algorithm 26.2.17 [10]):

where ϕ(x) is the standard normal PDF, and b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978, b5 = 1.330274429.

• Hart (1968) lists almost a hundred of rational function approximations for the erfc() function. His algorithms 
vary in the degree of complexity and the resulting precision, with maximum absolute precision of 24 digits. An 
algorithm by West (2009) combines Hart's algorithm 5666 with a continued fraction approximation in the tail to
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provide a fast computation algorithm with a 16-digit precision.
• Cody (1969) after recalling Hart68 solution is not suited for erf, gives a solution for both erf and erfc, with

maximal relative error bound, via Rational Chebyshev Approximation.
• Marsaglia (2004) suggested a simple algorithm[11] based on the Taylor series expansion

for calculating Φ(x) with arbitrary precision. The drawback of this algorithm is comparatively slow calculation
time (for example it takes over 300 iterations to calculate the function with 16 digits of precision when x = 10).

• The GNU Scientific Library calculates values of the standard normal CDF using Hart's algorithms and
approximations with Chebyshev polynomials.

History

Development
Some authors attribute the credit for the discovery of the normal distribution to de Moivre, who in 1738[12] published
in the second edition of his "The Doctrine of Chances" the study of the coefficients in the binomial expansion of (a +
b)n. De Moivre proved that the middle term in this expansion has the approximate magnitude of , and that
"If m or ½n be a Quantity infinitely great, then the Logarithm of the Ratio, which a Term distant from the middle by
the Interval ℓ, has to the middle Term, is ."[13] Although this theorem can be interpreted as the first obscure
expression for the normal probability law, Stigler points out that de Moivre himself did not interpret his results as
anything more than the approximate rule for the binomial coefficients, and in particular de Moivre lacked the
concept of the probability density function.

Carl Friedrich Gauss discovered the normal
distribution in 1809 as a way to rationalize the

method of least squares.

In 1809 Gauss published his monograph "Theoria motus corporum
coelestium in sectionibus conicis solem ambientium" where among
other things he introduces several important statistical concepts, such
as the method of least squares, the method of maximum likelihood, and
the normal distribution. Gauss used M, M′, M′′, … to denote the
measurements of some unknown quantity V, and sought the "most
probable" estimator: the one that maximizes the probability φ(M−V) ·
φ(M′−V) · φ(M′′−V) · … of obtaining the observed experimental
results. In his notation φΔ is the probability law of the measurement
errors of magnitude Δ. Not knowing what the function φ is, Gauss
requires that his method should reduce to the well-known answer: the
arithmetic mean of the measured values.[14] Starting from these
principles, Gauss demonstrates that the only law that rationalizes the
choice of arithmetic mean as an estimator of the location parameter, is
the normal law of errors:

where h is "the measure of the precision of the observations". Using this normal law as a generic model for errors in
the experiments, Gauss formulates what is now known as the non-linear weighted least squares (NWLS) method.
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Marquis de Laplace proved the central limit
theorem in 1810, consolidating the importance of

the normal distribution in statistics.

Although Gauss was the first to suggest the normal distribution law,
Laplace made significant contributions.[15] It was Laplace who first
posed the problem of aggregating several observations in 1774,
although his own solution led to the Laplacian distribution. It was
Laplace who first calculated the value of the integral ∫ e−t ²dt = √π in
1782, providing the normalization constant for the normal distribution.
Finally, it was Laplace who in 1810 proved and presented to the
Academy the fundamental central limit theorem, which emphasized the
theoretical importance of the normal distribution.

It is of interest to note that in 1809 an American mathematician Adrain
published two derivations of the normal probability law,
simultaneously and independently from Gauss. His works remained
largely unnoticed by the scientific community, until in 1871 they were
"rediscovered" by Abbe.

In the middle of the 19th century Maxwell demonstrated that the
normal distribution is not just a convenient mathematical tool, but may
also occur in natural phenomena: "The number of particles whose
velocity, resolved in a certain direction, lies between x and x + dx is

Naming
Since its introduction, the normal distribution has been known by many different names: the law of error, the law of
facility of errors, Laplace's second law, Gaussian law, etc. Gauss himself apparently coined the term with reference
to the "normal equations" involved in its applications, with normal having its technical meaning of orthogonal rather
than "usual".[16] However, by the end of the 19th century some authors[17] had started using the name normal
distribution, where the word "normal" was used as an adjective – the term now being seen as a reflection of the fact
that this distribution was seen as typical, common – and thus "normal". Peirce (one of those authors) once defined
"normal" thus: "...the 'normal' is not the average (or any other kind of mean) of what actually occurs, but of what
would, in the long run, occur under certain circumstances."[18] Around the turn of the 20th century Pearson
popularized the term normal as a designation for this distribution.

Many years ago I called the Laplace–Gaussian curve the normal curve, which name, while it avoids an
international question of priority, has the disadvantage of leading people to believe that all other distributions
of frequency are in one sense or another 'abnormal'.
—Pearson (1920)

Also, it was Pearson who first wrote the distribution in terms of the standard deviation σ as in modern notation. Soon
after this, in year 1915, Fisher added the location parameter to the formula for normal distribution, expressing it in
the way it is written nowadays:

The term "standard normal", which denotes the normal distribution with zero mean and unit variance came into
general use around 1950s, appearing in the popular textbooks by P.G. Hoel (1947) "Introduction to mathematical
statistics" and A.M. Mood (1950) "Introduction to the theory of statistics".
When the name is used, the "Gaussian distribution" was named after Carl Friedrich Gauss, who introduced the 
distribution in 1809 as a way of rationalizing the method of least squares as outlined above. Among English
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speakers, both "normal distribution" and "Gaussian distribution" are in common use, with different terms preferred
by different communities.

Notes
[1] Normal Distribution (http:/ / findarticles. com/ p/ articles/ mi_g2699/ is_0002/ ai_2699000241), Gale Encyclopedia of Psychology
[2] WolframAlpha.com (http:/ / www. wolframalpha. com/ input/ ?i=Table[{N(Erf(n/ Sqrt(2)),+ 12),+ N(1-Erf(n/ Sqrt(2)),+ 12),+ N(1/ (1-Erf(n/

Sqrt(2))),+ 12)},+ {n,1,6}])
[3] part 1 (http:/ / www. wolframalpha. com/ input/ ?i=Table[Sqrt(2)*InverseErf(x),+ {x,+ N({8/ 10,+ 9/ 10,+ 19/ 20,+ 49/ 50,+ 99/ 100,+ 995/

1000,+ 998/ 1000},+ 13)}]), part 2 (http:/ / www. wolframalpha. com/ input/
?i=Table[{N(1-10^(-x),9),N(Sqrt(2)*InverseErf(1-10^(-x)),13)},{x,3,9}])

[4] Normal Approximation to Poisson(λ) Distribution, http:/ / www. stat. ucla. edu/ (http:/ / www. stat. ucla. edu/ ~dinov/ courses_students. dir/
Applets. dir/ NormalApprox2PoissonApplet. html)

[5] Quine, M.P. (1993) "On three characterisations of the normal distribution" (http:/ / www. math. uni. wroc. pl/ ~pms/ publicationsArticle.
php?nr=14. 2& nrA=8& ppB=257& ppE=263), Probability and Mathematical Statistics, 14 (2), 257-263

[6] UIUC, Lecture 21. The Multivariate Normal Distribution (http:/ / www. math. uiuc. edu/ ~r-ash/ Stat/ StatLec21-25. pdf), 21.6:"Individually
Gaussian Versus Jointly Gaussian".

[7] Edward L. Melnick and Aaron Tenenbein, "Misspecifications of the Normal Distribution", The American Statistician, volume 36, number 4
November 1982, pages 372–373

[8] http:/ / www. allisons. org/ ll/ MML/ KL/ Normal/
[9] Normal Product Distribution (http:/ / mathworld. wolfram. com/ NormalProductDistribution. html), Mathworld
[10] http:/ / www. math. sfu. ca/ ~cbm/ aands/ page_932. htm
[11] For example, this algorithm is given in the article Bc programming language.
[12][12] De Moivre first published his findings in 1733, in a pamphlet "Approximatio ad Summam Terminorum Binomii in Seriem Expansi" that was

designated for private circulation only. But it was not until the year 1738 that he made his results publicly available. The original pamphlet
was reprinted several times, see for example .

[13] De Moivre, Abraham (1733), Corollary I – see
[14] "It has been customary certainly to regard as an axiom the hypothesis that if any quantity has been determined by several direct

observations, made under the same circumstances and with equal care, the arithmetical mean of the observed values affords the most probable
value, if not rigorously, yet very nearly at least, so that it is always most safe to adhere to it." —

[15] "My custom of terming the curve the Gauss–Laplacian or normal curve saves us from proportioning the merit of discovery between the two
great astronomer mathematicians." quote from

[16] Jaynes, Edwin J.; Probability Theory: The Logic of Science, Ch 7 (http:/ / www-biba. inrialpes. fr/ Jaynes/ cc07s. pdf)
[17] Besides those specifically referenced here, such use is encountered in the works of Peirce, Galton () and Lexis (, ) c. 1875.
[18] Peirce, Charles S. (c. 1909 MS), Collected Papers v. 6, paragraph 327
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External links
• Hazewinkel, Michiel, ed. (2001), "Normal distribution" (http:/ / www. encyclopediaofmath. org/ index.

php?title=p/ n067460), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
• Normal Distribution Video Tutorial Part 1-2 (http:/ / www. youtube. com/ watch?v=kB_kYUbS_ig)
• An 8-foot-tall (2.4 m) Probability Machine (named Sir Francis) comparing stock market returns to the

randomness of the beans dropping through the quincunx pattern. (http:/ / www. youtube. com/
watch?v=AUSKTk9ENzg) YouTube link originating from Index Funds Advisors (http:/ / www. ifa. com)
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Student's t-distribution

Student's t

Probability density function

Cumulative distribution function

Parameters ν > 0 degrees of freedom (real)

Support x ∈ (−∞; +∞)

pdf

CDF

where 2F1 is the hypergeometric function
Mean 0 for ν > 1, otherwise undefined

Median 0

Mode 0

Variance for ν > 2, ∞ for 1 < ν ≤ 2, otherwise undefined
Skewness 0 for ν > 3, otherwise undefined

Ex. kurtosis for ν > 4, ∞ for 2 < ν ≤ 4, otherwise undefined

Entropy

• ψ: digamma function,
• B: beta function

MGF undefined
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CF
for ν > 0

• Kν(x): Modified Bessel function of the second kind[1]

In probability and statistics, Student's t-distribution (or simply the t-distribution) is a family of continuous
probability distributions that arises when estimating the mean of a normally distributed population in situations
where the sample size is small and population standard deviation is unknown. It plays a role in a number of widely
used statistical analyses, including the Student's t-test for assessing the statistical significance of the difference
between two sample means, the construction of confidence intervals for the difference between two population
means, and in linear regression analysis. The Student's t-distribution also arises in the Bayesian analysis of data from
a normal family.
If we take a sample of n = ν+1 observations from a normal distribution (the black curve on the figure on the right of
this page, representing a very large ν), compute the sample mean and plot it, and repeat this process infinitely many
times (for the same n), we get the probability density function for that n, as shown in the image on the right.
If we also compute the sample variance for these n observations, then the t-distribution (for n-1) can be defined as
the distribution of the location of the true mean, relative to the sample mean and divided by the sample standard
deviation, after multiplying by the normalizing term , where n is the sample size. In this way, the t-distribution
can be used to estimate how likely it is that the true mean lies in any given range.
The t-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier tails, meaning that it is
more prone to producing values that fall far from its mean. This makes it useful for understanding the statistical
behavior of certain types of ratios of random quantities, in which variation in the denominator is amplified and may
produce outlying values when the denominator of the ratio falls close to zero. The Student's t-distribution is a special
case of the generalised hyperbolic distribution.

History and etymology
In statistics, the t-distribution was first derived as a posterior distribution in 1876 by Helmert and Lüroth.
In the English-language literature it takes its name from William Sealy Gosset's 1908 paper in Biometrika under the
pseudonym "Student".[2] Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in the
problems of small samples, for example of the chemical properties of barley where sample sizes might be as low as
3. One version of the origin of the pseudonym is that Gosset's employer forbade members of its staff from publishing
scientific papers, so he had to hide his identity. Another version is that Guinness did not want their competitors to
know that they were using the t-test to test the quality of raw material.[3]

Gosset's paper refers to the distribution as the "frequency distribution of standard deviations of samples drawn from
a normal population". It became well-known through the work of Ronald A. Fisher, who called the distribution
"Student's distribution" and referred to the value as t.[4]
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Definition

Probability density function
Student's t-distribution has the probability density function given by

where is the number of degrees of freedom and is the gamma function. This may also be written as

where B is the Beta function.
For even,

For ν odd,

The probability density function is symmetric, and its overall shape resembles the bell shape of a normally
distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the number of degrees of
freedom grows, the t-distribution approaches the normal distribution with mean 0 and variance 1.
The following images show the density of the t-distribution for increasing values of . The normal distribution is
shown as a blue line for comparison. Note that the t-distribution (red line) becomes closer to the normal distribution
as increases.

Density of the t-distribution (red) for 1, 2, 3, 5, 10, and 30 degrees of freedom compared to
the standard normal distribution (blue).

Previous plots shown in green.

1 degree of freedom 2 degrees of freedom 3 degrees of freedom
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5 degrees of freedom 10 degrees of freedom 30 degrees of freedom

Cumulative distribution function
The cumulative distribution function can be written in terms of I, the regularized incomplete beta function. For t > 0,

with

Other values would be obtained by symmetry. An alternative formula, valid for t2 < ν, is

where 2F1 is a particular case of the hypergeometric function.

Special cases
Certain values of ν give an especially simple form.
•• ν = 1

Distribution function:

Density function:

See Cauchy distribution
•• ν = 2

Distribution function:

Density function:
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•• ν = 3
Density function:

• ν = ∞
Density function:

See Normal distribution

How the t-distribution arises

Sampling distribution
Let x1, ..., xn be the numbers observed in a sample from a continuously distributed population with expected value μ.
The sample mean and sample variance are given by:

The resulting t-value is

The t-distribution with n − 1 degrees of freedom is the sampling distribution of the t-value when the samples consist
of independent identically distributed observations from a normally distributed population. Thus for inference
purposes t is a useful "pivotal quantity" in the case when the mean and variance (μ, σ2) are unknown population
parameters, in the sense that the t-value has then a probability distribution that depends on neither μ nor σ2.

Bayesian inference
In Bayesian statistics, a (scaled, shifted) t-distribution arises as the marginal distribution of the unknown mean of a
normal distribution, when the dependence on an unknown variance has been marginalised out:[5]

where D stands for the data {xi} and I represents any other information that may have been used to create the model.
The distribution is thus the compounding of the conditional distribution of μ given the data and σ2 with the marginal
distribution of σ2 given the data.
With n data points, if uninformative location and scale priors and can be taken for μ
and σ2, then Bayes' theorem gives
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a Normal distribution and a scaled inverse chi-squared distribution respectively, where ν = n − 1 and

.

The marginalisation integral thus becomes

This can be evaluated by substituting , where , giving

so

But the z integral is now a standard Gamma integral, which evaluates to a constant, leaving

This is a form of the t distribution with an explicit scaling and shifting that will be explored in more detail in a
further section below. It can be related to the standardised t distribution by the substitution

The derivation above has been presented for the case of uninformative priors for μ and σ2; but it will be apparent that
any priors which lead to a Normal distribution being compounded with a scaled inverse chi-squared distribution will
lead to a t distribution with scaling and shifting for P(μ|D,I), although the scaling parameter corresponding to s2/n
above will then be influenced both by the prior information and the data, rather than just by the data as above.

Characterization

As the distribution of a test statistic
Student's t-distribution with ν degrees of freedom can be defined as the distribution of the random variable T with
[][6]

where
• Z is normally distributed with expected value 0 and variance 1;
• V has a chi-squared distribution with ν degrees of freedom;
• Z and V are independent.
A different distribution is defined as that of the random variable defined, for a given constant μ, by

This random variable has a noncentral t-distribution with noncentrality parameter μ. This distribution is important in
studies of the power of Student's t-test.
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Derivation

Suppose X1, ..., Xn are independent random variables that are normally distributed with expected value μ and
variance σ2. Let

be the sample mean, and

be an unbiased estimate of the variance from the sample. It can be shown that the random variable

has a chi-squared distribution with v=n−1 degrees of freedom (by Cochran's theorem). It is readily shown that the
quantity

is normally distributed with mean 0 and variance 1, since the sample mean is normally distributed with mean μ
and variance σ2/n. Moreover, it is possible to show that these two random variables (the normally distributed one Z
and the chi-squared-distributed one V) are independent. ConsequentlyWikipedia:Please clarify the pivotal quantity,

which differs from Z in that the exact standard deviation σ is replaced by the random variable Sn, has a Student's
t-distribution as defined above. Notice that the unknown population variance σ2 does not appear in T, since it was in
both the numerator and the denominator, so it canceled. Gosset intuitively obtained the probability density function
stated above, with ν equal to n − 1, and Fisher proved it in 1925.
The distribution of the test statistic, T, depends on ν, but not μ or σ; the lack of dependence on μ and σ is what makes
the t-distribution important in both theory and practice.

As a maximum entropy distribution
Student's t-distribution is the maximum entropy probability distribution for a random variate X for which

is fixed.

Properties

Moments
The raw moments of the t-distribution are

Moments of order ν or higher do not exist.[7]

The term for 0 < k < ν, k even, may be simplified using the properties of the gamma function to
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For a t-distribution with ν degrees of freedom, the expected value is 0, and its variance is ν/(ν − 2) if ν > 2. The
skewness is 0 if ν > 3 and the excess kurtosis is 6/(ν − 4) if ν > 4.

Relation to F distribution

• has an F-distribution if Y = X2 and X ~ t(ν) has a Student's t-distribution.

Monte Carlo sampling
There are various approaches to constructing random samples from the Student's t-distribution. The matter depends
on whether the samples are required on a stand-alone basis, or are to be constructed by application of a quantile
function to uniform samples; e.g., in the multi-dimensional applications basis of copula-dependency.[citation needed] In
the case of stand-alone sampling, an extension of the Box–Muller method and its polar form is easily deployed. It
has the merit that it applies equally well to all real positive degrees of freedom, ν, while many other candidate
methods fail if ν is close to zero.

Integral of Student's probability density function and p-value
The function A(t|ν) is the integral of Student's probability density function, f(t) between −t and t, for t ≥ 0. It thus
gives the probability that a value of t less than that calculated from observed data would occur by chance. Therefore,
the function A(t|ν) can be used when testing whether the difference between the means of two sets of data is
statistically significant, by calculating the corresponding value of t and the probability of its occurrence if the two
sets of data were drawn from the same population. This is used in a variety of situations, particularly in t-tests. For
the statistic t, with ν degrees of freedom, A(t|ν) is the probability that t would be less than the observed value if the
two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily
calculated from the cumulative distribution function Fν(t) of the t-distribution:

where Ix is the regularized incomplete beta function (a, b).
For statistical hypothesis testing this function is used to construct the p-value.

Non-standardized Student's t-distribution

In terms of scaling parameter σ, or σ2

Student's t distribution can be generalized to a three parameter location-scale family, introducing a location
parameter μ and a scale parameter σ, through the relation

The resulting non-standardized Student's t-distribution has a density defined by

Here, σ does not correspond to a standard deviation: it is not the standard deviation of the scaled t distribution, which
may not even exist; nor is it the standard deviation of the underlying normal distribution, which is unknown. σ
simply sets the overall scaling of the distribution. In the Bayesian derivation of the marginal distribution of an
unknown Normal mean μ above, σ as used here corresponds to the quantity , where

.

Equivalently, the distribution can be written in terms of σ2, the square of this scale parameter:
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Other properties of this version of the distribution are:

This distribution results from compounding a Gaussian distribution (normal distribution) with mean μ and unknown
variance, with an inverse gamma distribution placed over the variance with parameters a = ν/2 and . In
other words, the random variable X is assumed to have a Gaussian distribution with an unknown variance distributed
as inverse gamma, and then the variance is marginalized out (integrated out). The reason for the usefulness of this
characterization is that the inverse gamma distribution is the conjugate prior distribution of the variance of a
Gaussian distribution. As a result, the non-standardized Student's t-distribution arises naturally in many Bayesian
inference problems. See below.
Equivalently, this distribution results from compounding a Gaussian distribution with a scaled-inverse-chi-squared
distribution with parameters ν and σ2. The scaled-inverse-chi-squared distribution is exactly the same distribution as
the inverse gamma distribution, but with a different parameterization, i.e. ν = a/2, σ2 = b/a.

In terms of inverse scaling parameter λ
An alternative parameterization in terms of an inverse scaling parameter λ (analogous to the way precision is the
reciprocal of variance), defined by the relation λ = σ−2. Then the density is defined by

Other properties of this version of the distribution are:

This distribution results from compounding a Gaussian distribution with mean μ and unknown precision (the
reciprocal of the variance), with a gamma distribution placed over the precision with parameters a = ν/2 and b =
ν/(2λ). In other words, the random variable X is assumed to have a normal distribution with an unknown precision
distributed as gamma, and then this is marginalized over the gamma distribution.
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Related distributions

Noncentral t-distribution
The noncentral t-distribution is a different way of generalizing the t-distribution to include a location parameter.
Unlike the nonstandardized t-distributions, the noncentral distributions are not symmetric (the median is not the
same as the mode).

Discrete Student's t-distribution
The discrete Student's t-distribution is defined by its probability mass function at r being proportional to[8]

Here a, b, and k are parameters. This distribution arises from the construction of a system of discrete distributions
similar to that of the Pearson distributions for continuous distributions.[9]

Uses

In frequentist statistical inference
Student's t-distribution arises in a variety of statistical estimation problems where the goal is to estimate an unknown
parameter, such as a mean value, in a setting where the data are observed with additive errors. If (as in nearly all
practical statistical work) the population standard deviation of these errors is unknown and has to be estimated from
the data, the t-distribution is often used to account for the extra uncertainty that results from this estimation. In most
such problems, if the standard deviation of the errors were known, a normal distribution would be used instead of the
t-distribution.
Confidence intervals and hypothesis tests are two statistical procedures in which the quantiles of the sampling
distribution of a particular statistic (e.g. the standard score) are required. In any situation where this statistic is a
linear function of the data, divided by the usual estimate of the standard deviation, the resulting quantity can be
rescaled and centered to follow Student's t-distribution. Statistical analyses involving means, weighted means, and
regression coefficients all lead to statistics having this form.
Quite often, textbook problems will treat the population standard deviation as if it were known and thereby avoid the
need to use the Student's t-distribution. These problems are generally of two kinds: (1) those in which the sample
size is so large that one may treat a data-based estimate of the variance as if it were certain, and (2) those that
illustrate mathematical reasoning, in which the problem of estimating the standard deviation is temporarily ignored
because that is not the point that the author or instructor is then explaining.

Hypothesis testing

A number of statistics can be shown to have t-distributions for samples of moderate size under null hypotheses that
are of interest, so that the t-distribution forms the basis for significance tests. For example, the distribution of
Spearman's rank correlation coefficient ρ, in the null case (zero correlation) is well approximated by the t distribution
for sample sizes above about 20 [citation needed].

Confidence intervals

Suppose the number A is so chosen that

when T has a t-distribution with n − 1 degrees of freedom. By symmetry, this is the same as saying that A satisfies
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so A is the "95th percentile" of this probability distribution, or . Then

and this is equivalent to

Therefore the interval whose endpoints are

is a 90% confidence interval for μ. Therefore, if we find the mean of a set of observations that we can reasonably
expect to have a normal distribution, we can use the t-distribution to examine whether the confidence limits on that
mean include some theoretically predicted value – such as the value predicted on a null hypothesis.
It is this result that is used in the Student's t-tests: since the difference between the means of samples from two
normal distributions is itself distributed normally, the t-distribution can be used to examine whether that difference
can reasonably be supposed to be zero.
If the data are normally distributed, the one-sided (1 − a)-upper confidence limit (UCL) of the mean, can be
calculated using the following equation:

The resulting UCL will be the greatest average value that will occur for a given confidence interval and population
size. In other words, being the mean of the set of observations, the probability that the mean of the distribution
is inferior to UCL1−a is equal to the confidence level 1 − a.

Prediction intervals

The t-distribution can be used to construct a prediction interval for an unobserved sample from a normal distribution
with unknown mean and variance.

In Bayesian statistics
The Student's t-distribution, especially in its three-parameter (location-scale) version, arises frequently in Bayesian
statistics as a result of its connection with the normal distribution. Whenever the variance of a normally distributed
random variable is unknown and a conjugate prior placed over it that follows an inverse gamma distribution, the
resulting marginal distribution of the variable will follow a Student's t-distribution. Equivalent constructions with the
same results involve a conjugate scaled-inverse-chi-squared distribution over the variance, or a conjugate gamma
distribution over the precision. If an improper prior proportional to σ−2 is placed over the variance, the t-distribution
also arises. This is the case regardless of whether the mean of the normally distributed variable is known, is unknown
distributed according to a conjugate normally distributed prior, or is unknown distributed according to an improper
constant prior.
Related situations that also produce a t-distribution are:
• The marginal posterior distribution of the unknown mean of a normally distributed variable, with unknown prior

mean and variance following the above model.
• The prior predictive distribution and posterior predictive distribution of a new normally distributed data point

when a series of independent identically distributed normally distributed data points have been observed, with
prior mean and variance as in the above model.

https://en.wikipedia.org/w/index.php?title=Confidence_interval
https://en.wikipedia.org/w/index.php?title=Null_hypothesis
https://en.wikipedia.org/w/index.php?title=Prediction_interval
https://en.wikipedia.org/w/index.php?title=Bayesian_statistics
https://en.wikipedia.org/w/index.php?title=Bayesian_statistics
https://en.wikipedia.org/w/index.php?title=Random_variable
https://en.wikipedia.org/w/index.php?title=Conjugate_prior
https://en.wikipedia.org/w/index.php?title=Inverse_gamma_distribution
https://en.wikipedia.org/w/index.php?title=Marginal_distribution
https://en.wikipedia.org/w/index.php?title=Scaled-inverse-chi-squared_distribution
https://en.wikipedia.org/w/index.php?title=Gamma_distribution
https://en.wikipedia.org/w/index.php?title=Gamma_distribution
https://en.wikipedia.org/w/index.php?title=Precision_%28statistics%29
https://en.wikipedia.org/w/index.php?title=Improper_prior
https://en.wikipedia.org/w/index.php?title=Conjugate_prior
https://en.wikipedia.org/w/index.php?title=Marginal_distribution
https://en.wikipedia.org/w/index.php?title=Posterior_distribution
https://en.wikipedia.org/w/index.php?title=Prior_predictive_distribution
https://en.wikipedia.org/w/index.php?title=Posterior_predictive_distribution
https://en.wikipedia.org/w/index.php?title=Independent_identically_distributed


Student's t-distribution 124

Robust parametric modeling
The t-distribution is often used as an alternative to the normal distribution as a model for data. It is frequently the
case that real data have heavier tails than the normal distribution allows for. The classical approach was to identify
outliers and exclude or downweight them in some way. However, it is not always easy to identify outliers (especially
in high dimensions), and the t-distribution is a natural choice of model for such data and provides a parametric
approach to robust statistics.
Lange et al. explored the use of the t-distribution for robust modeling of heavy tailed data in a variety of contexts. A
Bayesian account can be found in Gelman et al. The degrees of freedom parameter controls the kurtosis of the
distribution and is correlated with the scale parameter. The likelihood can have multiple local maxima and, as such,
it is often necessary to fix the degrees of freedom at a fairly low value and estimate the other parameters taking this
as given. Some authors report that values between 3 and 9 are often good choices. Venables and Ripley suggest that
a value of 5 is often a good choice.

Table of selected values
Most statistical textbooks list t distribution tables. Nowadays, the better way to a fully precise critical t value or a
cumulative probability is the statistical function implemented in spreadsheets (Office Excel, OpenOffice Calc, etc.),
or an interactive calculating web page. The relevant spreadsheet functions are TDIST and TINV, while online
calculating pages save troubles like positions of parameters or names of functions. For example, a MediaWiki page
supported by R extension can easily give the interactive result of critical values or cumulative probability, even for
noncentral t-distribution.
The following table lists a few selected values for t-distributions with ν degrees of freedom for a range of one-sided
or two-sided critical regions. For an example of how to read this table, take the fourth row, which begins with 4; that
means ν, the number of degrees of freedom, is 4 (and if we are dealing, as above, with n values with a fixed sum, n =
5). Take the fifth entry, in the column headed 95% for one-sided (90% for two-sided). The value of that entry is
"2.132". Then the probability that T is less than 2.132 is 95% or Pr(−∞ < T < 2.132) = 0.95; or mean that Pr(−2.132
< T < 2.132) = 0.9.
This can be calculated by the symmetry of the distribution,

Pr(T < −2.132) = 1 − Pr(T > −2.132) = 1 − 0.95 = 0.05,
and so

Pr(−2.132 < T < 2.132) = 1 − 2(0.05) = 0.9.
Note that the last row also gives critical points: a t-distribution with infinitely many degrees of freedom is a normal
distribution. (See Related distributions above).
The first column is the number of degrees of freedom.

One Sided 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%

Two Sided 50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9%

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
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8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496

60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

The number at the beginning of each row in the table above is ν which has been defined above as n − 1. The
percentage along the top is 100%(1 − α). The numbers in the main body of the table are tα, ν. If a quantity T is
distributed as a Student's t distribution with ν degrees of freedom, then there is a probability 1 − α that T will be less
than tα, ν. (Calculated as for a one-tailed or one-sided test, as opposed to a two-tailed test.)
For example, given a sample with a sample variance 2 and sample mean of 10, taken from a sample set of 11 (10
degrees of freedom), using the formula

We can determine that at 90% confidence, we have a true mean lying below
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(In other words, on average, 90% of the times that an upper threshold is calculated by this method, this upper
threshold exceeds the true mean.) And, still at 90% confidence, we have a true mean lying over

(In other words, on average, 90% of the times that a lower threshold is calculated by this method, this lower
threshold lies below the true mean.) So that at 80% confidence (calculated from 1 − 2 × (1 − 90%) = 80%), we have
a true mean lying within the interval

This is generally expressed in interval notation, e.g., for this case, at 80% confidence the true mean is within the
interval [9.41490, 10.58510].
(In other words, on average, 80% of the times that upper and lower thresholds are calculated by this method, the true
mean is both below the upper threshold and above the lower threshold. This is not the same thing as saying that there
is an 80% probability that the true mean lies between a particular pair of upper and lower thresholds that have been
calculated by this method—see confidence interval and prosecutor's fallacy.)
For information on the inverse cumulative distribution function see quantile function.

Notes
[1] Hurst, Simon. The Characteristic Function of the Student-t Distribution (http:/ / wwwmaths. anu. edu. au/ research. reports/ srr/ 95/ 044/ ),

Financial Mathematics Research Report No. FMRR006-95, Statistics Research Report No. SRR044-95
[2] "Student" (William Sealy Gosset), original Biometrika paper as a scan (http:/ / www. atmos. washington. edu/ ~robwood/ teaching/ 451/

student_in_biometrika_vol6_no1. pdf)
[3] Mortimer, Robert G. (2005) Mathematics for Physical Chemistry, Academic Press. 3 edition. ISBN 0-12-508347-5 (page 326)
[4] Walpole, Ronald; Myers, Raymond; Myers, Sharon; Ye, Keying. (2002) Probability and Statistics for Engineers and Scientists. Pearson

Education, 7th edition, pg. 237 ISBN 81-7758-404-9
[5] A. Gelman et al (1995), Bayesian Data Analysis, Chapman & Hall. ISBN 0-412-03991-5. p. 68
[6] Hogg & Craig (1978, Sections 4.4 and 4.8.)
[7] See, for example, page 56 of Casella and Berger, Statistical Inference, 1990 Duxbury.
[8] Ord, J.K. (1972) Families of Frequency Distributions, Griffin. ISBN 0-85264-137-0 (Table 5.1)
[9] Ord, J.K. (1972) Families of Frequency Distributions, Griffin. ISBN 0-85264-137-0 (Chapter 5)
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Skewness

for d2 > 6
Ex. kurtosis see text

MGF does not exist, raw moments defined in text and in

CF see text

In probability theory and statistics, the F-distribution is a continuous probability distribution.[1] It is also known as
Snedecor's F distribution or the Fisher-Snedecor distribution (after R.A. Fisher and George W. Snedecor). The
F-distribution arises frequently as the null distribution of a test statistic, most notably in the analysis of variance; see
F-test.

Definition
If a random variable X has an F-distribution with parameters d1 and d2, we write X ~ F(d1, d2). Then the probability
density function for X is given by

for real x ≥ 0. Here is the beta function. In many applications, the parameters d1 and d2 are positive integers, but
the distribution is well-defined for positive real values of these parameters.
The cumulative distribution function is

where I is the regularized incomplete beta function.
The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess
kurtosis is

.

The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to

The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta
distribution of the second kind.
The characteristic function is listed incorrectly in many standard references (e.g., ). The correct expression [2] is

where U(a, b, z) is the confluent hypergeometric function of the second kind.
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Characterization
A random variate of the F-distribution with parameters d1 and d2 arises as the ratio of two appropriately scaled
chi-squared variates:[3]

where
• U1 and U2 have chi-squared distributions with d1 and d2 degrees of freedom respectively, and
• U1 and U2 are independent.
In instances where the F-distribution is used, for example in the analysis of variance, independence of U1 and U2
might be demonstrated by applying Cochran's theorem.
Equivalently, the random variable of the F-distribution may also be written

where s1
2 and s2

2 are the sums of squares S1
2 and S2

2 from two normal processes with variances σ1
2 and σ2

2 divided
by the corresponding number of χ2 degrees of freedom, d1 and d2 respectively.
In a Frequentist context, a scaled F-distribution therefore gives the probability p(s1

2/s2
2 | σ1

2, σ2
2), with the F

distribution itself, without any scaling, applying where σ1
2 is being taken equal to σ2

2. This is the context in which
the F-distribution most generally appears in F-tests: where the null hypothesis is that two independent normal
variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether
their ratio is significantly incompatible with this null hypothesis.
The quantity X has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant Jeffreys prior
is taken for the prior probabilities of σ1

2 and σ2
2.[4] In this context, a scaled F-distribution thus gives the posterior

probability p(σ2
2/σ1

2|s1
2, s2

2), where now the observed sums s1
2 and s2

2 are what are taken as known.

Generalization
A generalization of the (central) F-distribution is the noncentral F-distribution.

Related distributions and properties

• If and are independent, then 

• If (Beta distribution) then 

• Equivalently, if X ~ F(d1, d2), then .

• If X ~ F(d1, d2) then has the chi-squared distribution 

• F(d1, d2) is equivalent to the scaled Hotelling's T-squared distribution 

.
• If X ~ F(d1, d2) then X−1 ~ F(d2, d1).
• If X ~ t(n) then

• F-distribution is a special case of type 6 Pearson distribution
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• If X and Y are independent, with X, Y ~ Laplace(μ, b) then

• If X ~ F(n, m) then (Fisher's z-distribution)
• The noncentral F-distribution simplifies to the F-distribution if λ = 0.
• The doubly noncentral F-distribution simplifies to the F-distribution if 

• If is the quantile p for X ~ F(d1, d2) and is the quantile 1−p for Y ~ F(d2, d1), then

.
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External links
• Table of critical values of the F-distribution (http:/ / www. itl. nist. gov/ div898/ handbook/ eda/ section3/

eda3673. htm)
• Earliest Uses of Some of the Words of Mathematics: entry on F-distribution contains a brief history (http:/ /

jeff560. tripod. com/ f. html)
• Free calculator for F-testing (http:/ / www. waterlog. info/ f-test. htm)

Feature scaling
Feature scaling is a method used to standardize the range of independent variables or features of data. In data
processing, it is also known as data normalization and is generally performed during the data preprocessing step.

Motivation
Since the range of values of raw data varies widely, in some machine learning algorithms, objective functions will
not work properly without normalization. For example, the majority of classifiers calculate the distance between two
points by the distance. If one of the features has a broad range of values, the distance will be governed by this
particular feature. Therefore, the range of all features should be normalized so that each feature contributes
approximately proportionately to the final distance.

Methods

Rescaling
The simplest method is rescaling the range of features to make the features independent of each other and aims to
scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula
is given as:

where is an original value, is the normalized value. For example, suppose that we have the students' weight 
data, and the students' weights span [160 pounds, 200 pounds]. To rescale this data, we first subtract 160 from each
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student's weight and divide the result by 40 (the difference between the maximum and minimum weights).

Standardization
In machine learning, we can handle various types of data, e.g., audio signals, pixel values for image data, and etc.,
and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data
have zero-mean and unit-variance. This method is widely used for normalization in many machine learning
algorithms (e.g., support vector machines, logistic regression, and neural networks). In general, we first calculate the
mean and standard deviation for each feature, and then, subtract the mean in each feature. Then, we divide the values
(mean is already subtracted) of each feature by its standard deviation.

Scaling to unit length
Another option that is widely used in machine-learning is to scale the components of a feature vector such that the
complete vector has length one. This usually means dividing each component by the Euclidean length of the vector.
In some applications (e.g. Histogram features) it can be more practical to use the L1 norm (i.e. Manhattan or
City-Block Length) of the feature vector:

This is especially important if in the following learning steps the Scalar Metric is used as a distance measure.

Application
In gradient descent, feature scaling can improve the convergence speed of the algorithm. In SVM, it reduces the time
to find support vectors and helps the data points be properly placed in the space of kernel function.
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External links
• Lecture by Andrew Ng on feature scaling (http:/ / openclassroom. stanford. edu/ MainFolder/ VideoPage.

php?course=MachineLearning& video=03. 1-LinearRegressionII-FeatureScaling& speed=100/ )
• Gradient Descent using feature scaling (http:/ / www. statalgo. com/ 2011/ 10/ 17/

stanford-ml-1-2-gradient-descent/ )
• Feature normalization (http:/ / mipa. med. upatras. gr/ educational resources/ Data Normalization. pdf)
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Correlation and Regression

Covariance
In probability theory and statistics, covariance is a measure of how much two random variables change together. If
the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds
for the smaller values, i.e., the variables tend to show similar behavior, the covariance is positive.[1] In the opposite
case, when the greater values of one variable mainly correspond to the smaller values of the other, i.e., the variables
tend to show opposite behavior, the covariance is negative. The sign of the covariance therefore shows the tendency
in the linear relationship between the variables. The magnitude of the covariance is not easy to interpret. The
normalized version of the covariance, the correlation coefficient, however, shows by its magnitude the strength of
the linear relation.
A distinction must be made between (1) the covariance of two random variables, which is a population parameter
that can be seen as a property of the joint probability distribution, and (2) the sample covariance, which serves as an
estimated value of the parameter.

Definition
The covariance between two jointly distributed real-valued random variables x and y with finite second moments is
defined[2] as

where E[x] is the expected value of x, also known as the mean of x. By using the linearity property of expectations,
this can be simplified to

However, when , this last equation is prone to catastrophic cancellation when computed with
floating point arithmetic and thus should be avoided in computer programs when the data has not been centered
before.[3]

For random vectors and (of dimension m and n respectively) the m×n cross covariance matrix (also known as
dispersion matrix or variance–covariance matrix,[4] or simply called covariance matrix) is equal to

where mT is the transpose of the vector (or matrix) m.
The (i,j)-th element of this matrix is equal to the covariance Cov(xi, yj) between the i-th scalar component of x and
the j-th scalar component of y. In particular, Cov(y, x) is the transpose of Cov(x, y).

For a vector of m jointly distributed random variables with finite second moments, its

covariance matrix is defined as

Random variables whose covariance is zero are called uncorrelated.
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The units of measurement of the covariance Cov(x, y) are those of x times those of y. By contrast, correlation
coefficients, which depend on the covariance, are a dimensionless measure of linear dependence. (In fact, correlation
coefficients can simply be understood as a normalized version of covariance.)

Properties
• Variance is a special case of the covariance when the two variables are identical:

• If x, y, w, and v are real-valued random variables and a, b, c, d are constant ("constant" in this context means
non-random), then the following facts are a consequence of the definition of covariance:

For a sequence x1, ..., xn of random variables, and constants a1, ..., an, we have

A more general identity for covariance matrices

Let be a random vector with covariance matrix , and let be a matrix that can act on . The covariance
matrix of the vector is:

.
This is a direct result of the linearity of expectation and is useful when applying a linear transformation, such as a
whitening transformation, to a vector.

Uncorrelatedness and independence
If x and y are independent, then their covariance is zero. This follows because under independence,

The converse, however, is not generally true. For example, let x be uniformly distributed in [-1, 1] and let y = x2.
Clearly, x and y are dependent, but

In this case, the relationship between y and x is non-linear, while correlation and covariance are measures of linear
dependence between two variables. This example shows that if two variables are uncorrelated, that does not in
general imply that they are independent. However, if two variables are jointly normally distributed (but not if they
are merely individually normally distributed), uncorrelatedness does imply independence.
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Relationship to inner products
Many of the properties of covariance can be extracted elegantly by observing that it satisfies similar properties to
those of an inner product:
1. bilinear: for constants a and b and random variables x, y, z, σ(ax + by, z) = a σ(x, z) + b σ(y, z);
2. symmetric: σ(x, y) = σ(y, x);
3. positive semi-definite: σ2(x) = σ(x, x) ≥ 0 for all random variables x, and σ(x, x) = 0 implies that x is a constant

random variable (K).
In fact these properties imply that the covariance defines an inner product over the quotient vector space obtained by
taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.
(This identification turns the positive semi-definiteness above into positive definiteness.) That quotient vector space
is isomorphic to the subspace of random variables with finite second moment and mean zero; on that subspace, the
covariance is exactly the L2 inner product of real-valued functions on the sample space.
As a result for random variables with finite variance, the inequality

holds via the Cauchy–Schwarz inequality.
Proof: If σ2(y) = 0, then it holds trivially. Otherwise, let random variable

Then we have

Calculating the sample covariance
The sample covariance of N observations of K variables is the K-by-K matrix with the entries

,

which is an estimate of the covariance between variable j and variable k.
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of
the random vector , a row vector whose jth element (j = 1, ..., K) is one of the random variables. The reason the
sample covariance matrix has in the denominator rather than is essentially that the population mean

is not known and is replaced by the sample mean . If the population mean is known, the analogous
unbiased estimate is given by
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Comments
The covariance is sometimes called a measure of "linear dependence" between the two random variables. That does
not mean the same thing as in the context of linear algebra (see linear dependence). When the covariance is
normalized, one obtains the correlation coefficient. From it, one can obtain the Pearson coefficient, which gives us
the goodness of the fit for the best possible linear function describing the relation between the variables. In this sense
covariance is a linear gauge of dependence.

Applications

In genetics and molecular biology
Covariance is an important measure in biology. Certain sequences of DNA are conserved more than others among
species, and thus to study secondary and tertiary structures of proteins, or of RNA structures, we compare sequences
in closely related species. If we find sequence changes or no changes at all in noncoding RNA (such as microRNA),
we can find out about which sequences are necessary for common structural motifs, such as an RNA loop.

In financial economics
Covariances play a key role in financial economics, especially in portfolio theory and in the capital asset pricing
model. Covariances among various assets' returns are used to determine, under certain assumptions, the relative
amounts of different assets that investors should (in a normative analysis) or are predicted to (in a positive analysis)
choose to hold in a context of diversification.
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Correlation and dependence
In statistics, dependence is any statistical relationship between two random variables or two sets of data.
Correlation refers to any of a broad class of statistical relationships involving dependence.
Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their
offspring, and the correlation between the demand for a product and its price. Correlations are useful because they
can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce
less power on a mild day based on the correlation between electricity demand and weather. In this example there is a
causal relationship, because extreme weather causes people to use more electricity for heating or cooling; however,
statistical dependence is not sufficient to demonstrate the presence of such a causal relationship (i.e., correlation does
not imply causation).
Formally, dependence refers to any situation in which random variables do not satisfy a mathematical condition of
probabilistic independence. In loose usage, correlation can refer to any departure of two or more random variables
from independence, but technically it refers to any of several more specialized types of relationship between mean
values. There are several correlation coefficients, often denoted ρ or r, measuring the degree of correlation. The
most common of these is the Pearson correlation coefficient, which is sensitive only to a linear relationship between
two variables (which may exist even if one is a nonlinear function of the other). Other correlation coefficients have
been developed to be more robust than the Pearson correlation – that is, more sensitive to nonlinear
relationships.[1][2][3] Mutual information can also be applied to measure dependence between two variables.

Several sets of (x, y) points, with the Pearson correlation coefficient of x and y for each
set. Note that the correlation reflects the noisiness and direction of a linear relationship
(top row), but not the slope of that relationship (middle), nor many aspects of nonlinear
relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the

correlation coefficient is undefined because the variance of Y is zero.

Pearson's
product-moment
coefficient

The most familiar measure of
dependence between two quantities is
the Pearson product-moment
correlation coefficient, or "Pearson's
correlation coefficient", commonly
called simply "the correlation
coefficient". It is obtained by dividing
the covariance of the two variables by
the product of their standard
deviations. Karl Pearson developed the
coefficient from a similar but slightly
different idea by Francis Galton.[4]

The population correlation coefficient ρX,Y between two random variables X and Y with expected values μX and μY
and standard deviations σX and σY is defined as:

where E is the expected value operator, cov means covariance, and, corr a widely used alternative notation for the
correlation coefficient.
The Pearson correlation is defined only if both of the standard deviations are finite and both of them are nonzero. It
is a corollary of the Cauchy–Schwarz inequality that the correlation cannot exceed 1 in absolute value. The
correlation coefficient is symmetric: corr(X,Y) = corr(Y,X).
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The Pearson correlation is +1 in the case of a perfect direct(increasing) linear relationship (correlation), −1 in the
case of a perfect decreasing (inverse) linear relationship (anticorrelation),[5] and some value between −1 and 1 in all
other cases, indicating the degree of linear dependence between the variables. As it approaches zero there is less of a
relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the stronger the correlation
between the variables.
If the variables are independent, Pearson's correlation coefficient is 0, but the converse is not true because the
correlation coefficient detects only linear dependencies between two variables. For example, suppose the random
variable X is symmetrically distributed about zero, and Y = X2. Then Y is completely determined by X, so that X and
Y are perfectly dependent, but their correlation is zero; they are uncorrelated. However, in the special case when X
and Y are jointly normal, uncorrelatedness is equivalent to independence.
If we have a series of n measurements of X and Y written as xi and yi where i = 1, 2, ..., n, then the sample correlation
coefficient can be used to estimate the population Pearson correlation r between X and Y. The sample correlation
coefficient is written

where x and y are the sample means of X and Y, and sx and sy are the sample standard deviations of X and Y.
This can also be written as:

If x and y are results of measurements that contain measurement error, the realistic limits on the correlation
coefficient are not −1 to +1 but a smaller range.
For the case of a linear model with a single independent variable, the coefficient of determination (R squared) is the
square of r, Pearson's product-moment coefficient .

Rank correlation coefficients
Rank correlation coefficients, such as Spearman's rank correlation coefficient and Kendall's rank correlation
coefficient (τ) measure the extent to which, as one variable increases, the other variable tends to increase, without
requiring that increase to be represented by a linear relationship. If, as the one variable increases, the other decreases,
the rank correlation coefficients will be negative. It is common to regard these rank correlation coefficients as
alternatives to Pearson's coefficient, used either to reduce the amount of calculation or to make the coefficient less
sensitive to non-normality in distributions. However, this view has little mathematical basis, as rank correlation
coefficients measure a different type of relationship than the Pearson product-moment correlation coefficient, and are
best seen as measures of a different type of association, rather than as alternative measure of the population
correlation coefficient.[6][7]

To illustrate the nature of rank correlation, and its difference from linear correlation, consider the following four
pairs of numbers (x, y):

(0, 1), (10, 100), (101, 500), (102, 2000).
As we go from each pair to the next pair x increases, and so does y. This relationship is perfect, in the sense that an 
increase in x is always accompanied by an increase in y. This means that we have a perfect rank correlation, and both 
Spearman's and Kendall's correlation coefficients are 1, whereas in this example Pearson product-moment 
correlation coefficient is 0.7544, indicating that the points are far from lying on a straight line. In the same way if y 
always decreases when x increases, the rank correlation coefficients will be −1, while the Pearson product-moment
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correlation coefficient may or may not be close to −1, depending on how close the points are to a straight line.
Although in the extreme cases of perfect rank correlation the two coefficients are both equal (being both +1 or both
−1) this is not in general so, and values of the two coefficients cannot meaningfully be compared. For example, for
the three pairs (1, 1) (2, 3) (3, 2) Spearman's coefficient is 1/2, while Kendall's coefficient is 1/3.

Other measures of dependence among random variables
The information given by a correlation coefficient is not enough to define the dependence structure between random
variables. The correlation coefficient completely defines the dependence structure only in very particular cases, for
example when the distribution is a multivariate normal distribution. (See diagram above.) In the case of elliptical
distributions it characterizes the (hyper-)ellipses of equal density, however, it does not completely characterize the
dependence structure (for example, a multivariate t-distribution's degrees of freedom determine the level of tail
dependence).
Distance correlation and Brownian covariance / Brownian correlation [8][9] were introduced to address the deficiency
of Pearson's correlation that it can be zero for dependent random variables; zero distance correlation and zero
Brownian correlation imply independence.
The correlation ratio is able to detect almost any functional dependency[citation needed]Wikipedia:Please clarify, and
the entropy-based mutual information, total correlation and dual total correlation are capable of detecting even more
general dependencies. These are sometimes referred to as multi-moment correlation measures[citation needed], in
comparison to those that consider only second moment (pairwise or quadratic) dependence.
The polychoric correlation is another correlation applied to ordinal data that aims to estimate the correlation between
theorised latent variables.
One way to capture a more complete view of dependence structure is to consider a copula between them.
The coefficient of determination generalizes the correlation coefficient for relationships beyond simple linear
regression.

Sensitivity to the data distribution
The degree of dependence between variables X and Y does not depend on the scale on which the variables are
expressed. That is, if we are analyzing the relationship between X and Y, most correlation measures are unaffected by
transforming X to a + bX and Y to c + dY, where a, b, c, and d are constants. This is true of some correlation statistics
as well as their population analogues. Some correlation statistics, such as the rank correlation coefficient, are also
invariant to monotone transformations of the marginal distributions of X and/or Y.
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Pearson/Spearman correlation coefficients between X and Y are shown when the
two variables' ranges are unrestricted, and when the range of X is restricted to the

interval (0,1).

Most correlation measures are sensitive to
the manner in which X and Y are sampled.
Dependencies tend to be stronger if viewed
over a wider range of values. Thus, if we
consider the correlation coefficient between
the heights of fathers and their sons over all
adult males, and compare it to the same
correlation coefficient calculated when the
fathers are selected to be between 165 cm
and 170 cm in height, the correlation will be
weaker in the latter case. Several techniques
have been developed that attempt to correct
for range restriction in one or both variables,
and are commonly used in meta-analysis;
the most common are Thorndike's case II
and case III equations.

Various correlation measures in use may be
undefined for certain joint distributions of X
and Y. For example, the Pearson correlation coefficient is defined in terms of moments, and hence will be undefined
if the moments are undefined. Measures of dependence based on quantiles are always defined. Sample-based
statistics intended to estimate population measures of dependence may or may not have desirable statistical
properties such as being unbiased, or asymptotically consistent, based on the spatial structure of the population from
which the data were sampled.

Sensitivity to the data distribution can be used to an advantage. For example, scaled correlation is designed to use the
sensitivity to the range in order to pick out correlations between fast components of time series.[10] By reducing the
range of values in a controlled manner, the correlations on long time scale are filtered out and only the correlations
on short time scales are revealed.

Correlation matrices
The correlation matrix of n random variables X1, ..., Xn is the n  ×  n matrix whose i,j entry is corr(Xi, Xj). If the
measures of correlation used are product-moment coefficients, the correlation matrix is the same as the covariance
matrix of the standardized random variables Xi / σ (Xi) for i = 1, ..., n. This applies to both the matrix of population
correlations (in which case "σ" is the population standard deviation), and to the matrix of sample correlations (in
which case "σ" denotes the sample standard deviation). Consequently, each is necessarily a positive-semidefinite
matrix.
The correlation matrix is symmetric because the correlation between Xi and Xj is the same as the correlation between
Xj and Xi.

Common misconceptions

Correlation and causality
The conventional dictum that "correlation does not imply causation" means that correlation cannot be used to infer a 
causal relationship between the variables. This dictum should not be taken to mean that correlations cannot indicate 
the potential existence of causal relations. However, the causes underlying the correlation, if any, may be indirect 
and unknown, and high correlations also overlap with identity relations (tautologies), where no causal process exists.
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Consequently, establishing a correlation between two variables is not a sufficient condition to establish a causal
relationship (in either direction).
A correlation between age and height in children is fairly causally transparent, but a correlation between mood and
health in people is less so. Does improved mood lead to improved health, or does good health lead to good mood, or
both? Or does some other factor underlie both? In other words, a correlation can be taken as evidence for a possible
causal relationship, but cannot indicate what the causal relationship, if any, might be.

Correlation and linearity

Four sets of data with the same correlation of 0.816

The Pearson correlation coefficient
indicates the strength of a linear
relationship between two variables, but
its value generally does not completely
characterize their relationship. In
particular, if the conditional mean of Y
given X, denoted E(Y|X), is not linear
in X, the correlation coefficient will not
fully determine the form of E(Y|X).

The image on the right shows
scatterplots of Anscombe's quartet, a
set of four different pairs of variables
created by Francis Anscombe. The
four y variables have the same mean
(7.5), variance (4.12), correlation
(0.816) and regression line
(y = 3 + 0.5x). However, as can be seen on the plots, the distribution of the variables is very different. The first one
(top left) seems to be distributed normally, and corresponds to what one would expect when considering two
variables correlated and following the assumption of normality. The second one (top right) is not distributed
normally; while an obvious relationship between the two variables can be observed, it is not linear. In this case the
Pearson correlation coefficient does not indicate that there is an exact functional relationship: only the extent to
which that relationship can be approximated by a linear relationship. In the third case (bottom left), the linear
relationship is perfect, except for one outlier which exerts enough influence to lower the correlation coefficient from
1 to 0.816. Finally, the fourth example (bottom right) shows another example when one outlier is enough to produce
a high correlation coefficient, even though the relationship between the two variables is not linear.

These examples indicate that the correlation coefficient, as a summary statistic, cannot replace visual examination of
the data. Note that the examples are sometimes said to demonstrate that the Pearson correlation assumes that the data
follow a normal distribution, but this is not correct.
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Life-time of correlation
Most analyses do not take into account variation of the correlation coefficient with time. If the variables are
non-stationary, then some concepts of choosing optimal time intervals are needed. The durability of correlation
should also be calculated in such a case.[11]

Bivariate normal distribution
If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear
function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and
Y, along with the marginal means and variances of X and Y, determines this linear relationship:

where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X
and Y, respectively.

Partial correlation
If a population or data-set is characterized by more than two variables, a partial correlation coefficient measures the
strength of dependence between a pair of variables that is not accounted for by the way in which they both change in
response to variations in a selected subset of the other variables.
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Further reading
• Cohen, J., Cohen P., West, S.G., & Aiken, L.S. (2002). Applied multiple regression/correlation analysis for the

behavioral sciences (3rd ed.). Psychology Press. ISBN 0-8058-2223-2.
• Hazewinkel, Michiel, ed. (2001), "Correlation (in statistics)" (http:/ / www. encyclopediaofmath. org/ index.

php?title=p/ c026560), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

External links
• MathWorld page on (cross-) correlation coefficient(s) of a sample. (http:/ / mathworld. wolfram. com/

CorrelationCoefficient. html)
• Compute Significance between two correlations (http:/ / peaks. informatik. uni-erlangen. de/ cgi-bin/

usignificance. cgi) – A useful website if one wants to compare two correlation values.
• A MATLAB Toolbox for computing Weighted Correlation Coefficients (http:/ / www. mathworks. com/

matlabcentral/ fileexchange/ 20846)
• Proof that the Sample Bivariate Correlation Coefficient has Limits ±1 (http:/ / www. docstoc. com/ docs/

3530180/ Proof-that-the-Sample-Bivariate-Correlation-Coefficient-has-Limits-(Plus-or-Minus)-1)
• Interactive Flash simulation on the correlation of two normally distributed variables. (http:/ / nagysandor. eu/

AsimovTeka/ correlation_en/ index. html) Author: Juha Puranen.

Regression analysis

Regression analysis

Models

•• Linear regression
•• Simple regression
•• Ordinary least squares
•• Polynomial regression
•• General linear model

•• Generalized linear model
•• Discrete choice
•• Logistic regression
•• Multinomial logit
•• Mixed logit
•• Probit
•• Multinomial probit
•• Ordered logit
•• Ordered probit
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•• Poisson
•• Multilevel model
•• Fixed effects
•• Random effects
•• Mixed model

•• Nonlinear regression
•• Nonparametric
•• Semiparametric
•• Robust
•• Quantile
•• Isotonic
•• Principal components
•• Least angle
•• Local
•• Segmented
•• Errors-in-variables

Estimation

•• Least squares
•• Ordinary least squares
•• Linear (math)
•• Partial
•• Total
•• Generalized
•• Weighted
•• Non-linear
•• Iteratively reweighted
•• Ridge regression
•• LASSO
•• Least absolute deviations
•• Bayesian
•• Bayesian multivariate

Background

•• Regression model validation
•• Mean and predicted response
•• Errors and residuals
•• Goodness of fit
•• Studentized residual
• Gauss–Markov theorem
•  Statistics portal

•• v
•• t
• e [1]

In statistics, regression analysis is a statistical process for estimating the relationships among variables. It includes 
many techniques for modeling and analyzing several variables, when the focus is on the relationship between a 
dependent variable and one or more independent variables. More specifically, regression analysis helps one 
understand how the typical value of the dependent variable (or 'Criterion Variable') changes when any one of the 
independent variables is varied, while the other independent variables are held fixed. Most commonly, regression 
analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the
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average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a
quantile, or other location parameter of the conditional distribution of the dependent variable given the independent
variables. In all cases, the estimation target is a function of the independent variables called the regression function.
In regression analysis, it is also of interest to characterize the variation of the dependent variable around the
regression function which can be described by a probability distribution.
Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field
of machine learning. Regression analysis is also used to understand which among the independent variables are
related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances,
regression analysis can be used to infer causal relationships between the independent and dependent variables.
However this can lead to illusions or false relationships, so caution is advisable; for example, correlation does not
imply causation.
Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear
regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of
a finite number of unknown parameters that are estimated from the data. Nonparametric regression refers to
techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional.
The performance of regression analysis methods in practice depends on the form of the data generating process, and
how it relates to the regression approach being used. Since the true form of the data-generating process is generally
not known, regression analysis often depends to some extent on making assumptions about this process. These
assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are
often useful even when the assumptions are moderately violated, although they may not perform optimally.
However, in many applications, especially with small effects or questions of causality based on observational data,
regression methods can give misleading results.[2][3]

History
The earliest form of regression was the method of least squares, which was published by Legendre in 1805,[4] and by
Gauss in 1809.[5] Legendre and Gauss both applied the method to the problem of determining, from astronomical
observations, the orbits of bodies about the Sun (mostly comets, but also later the then newly discovered minor
planets). Gauss published a further development of the theory of least squares in 1821,[6] including a version of the
Gauss–Markov theorem.
The term "regression" was coined by Francis Galton in the nineteenth century to describe a biological phenomenon.
The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal
average (a phenomenon also known as regression toward the mean). For Galton, regression had only this biological
meaning,[7][8] but his work was later extended by Udny Yule and Karl Pearson to a more general statistical context.
In the work of Yule and Pearson, the joint distribution of the response and explanatory variables is assumed to be
Gaussian. This assumption was weakened by R.A. Fisher in his works of 1922 and 1925. Fisher assumed that the
conditional distribution of the response variable is Gaussian, but the joint distribution need not be. In this respect,
Fisher's assumption is closer to Gauss's formulation of 1821.
In the 1950s and 1960s, economists used electromechanical desk calculators to calculate regressions. Before 1970, it
sometimes took up to 24 hours to receive the result from one regression.[9]

Regression methods continue to be an area of active research. In recent decades, new methods have been developed
for robust regression, regression involving correlated responses such as time series and growth curves, regression in
which the predictor or response variables are curves, images, graphs, or other complex data objects, regression
methods accommodating various types of missing data, nonparametric regression, Bayesian methods for regression,
regression in which the predictor variables are measured with error, regression with more predictor variables than
observations, and causal inference with regression.
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Regression models
Regression models involve the following variables:
• The unknown parameters, denoted as β, which may represent a scalar or a vector.
• The independent variables, X.
• The dependent variable, Y.
In various fields of application, different terminologies are used in place of dependent and independent variables.
A regression model relates Y to a function of X and β.

The approximation is usually formalized as E(Y | X) = f(X, β). To carry out regression analysis, the form of the
function f must be specified. Sometimes the form of this function is based on knowledge about the relationship
between Y and X that does not rely on the data. If no such knowledge is available, a flexible or convenient form for f
is chosen.
Assume now that the vector of unknown parameters β is of length k. In order to perform a regression analysis the
user must provide information about the dependent variable Y:
• If N data points of the form (Y, X) are observed, where N < k, most classical approaches to regression analysis

cannot be performed: since the system of equations defining the regression model is underdetermined, there are
not enough data to recover β.

• If exactly N = k data points are observed, and the function f is linear, the equations Y = f(X, β) can be solved
exactly rather than approximately. This reduces to solving a set of N equations with N unknowns (the elements of
β), which has a unique solution as long as the X are linearly independent. If f is nonlinear, a solution may not
exist, or many solutions may exist.

• The most common situation is where N > k data points are observed. In this case, there is enough information in
the data to estimate a unique value for β that best fits the data in some sense, and the regression model when
applied to the data can be viewed as an overdetermined system in β.

In the last case, the regression analysis provides the tools for:
1. Finding a solution for unknown parameters β that will, for example, minimize the distance between the measured

and predicted values of the dependent variable Y (also known as method of least squares).
2. Under certain statistical assumptions, the regression analysis uses the surplus of information to provide statistical

information about the unknown parameters β and predicted values of the dependent variable Y.

Necessary number of independent measurements
Consider a regression model which has three unknown parameters, β0, β1, and β2. Suppose an experimenter
performs 10 measurements all at exactly the same value of independent variable vector X (which contains the
independent variables X1, X2, and X3). In this case, regression analysis fails to give a unique set of estimated values
for the three unknown parameters; the experimenter did not provide enough information. The best one can do is to
estimate the average value and the standard deviation of the dependent variable Y. Similarly, measuring at two
different values of X would give enough data for a regression with two unknowns, but not for three or more
unknowns.
If the experimenter had performed measurements at three different values of the independent variable vector X, then
regression analysis would provide a unique set of estimates for the three unknown parameters in β.
In the case of general linear regression, the above statement is equivalent to the requirement that the matrix XTX is
invertible.
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Statistical assumptions
When the number of measurements, N, is larger than the number of unknown parameters, k, and the measurement
errors εi are normally distributed then the excess of information contained in (N − k) measurements is used to make
statistical predictions about the unknown parameters. This excess of information is referred to as the degrees of
freedom of the regression.

Underlying assumptions
Classical assumptions for regression analysis include:
•• The sample is representative of the population for the inference prediction.
• The error is a random variable with a mean of zero conditional on the explanatory variables.
• The independent variables are measured with no error. (Note: If this is not so, modeling may be done instead

using errors-in-variables model techniques).
• The predictors are linearly independent, i.e. it is not possible to express any predictor as a linear combination of

the others.
• The errors are uncorrelated, that is, the variance–covariance matrix of the errors is diagonal and each non-zero

element is the variance of the error.
• The variance of the error is constant across observations (homoscedasticity). If not, weighted least squares or

other methods might instead be used.
These are sufficient conditions for the least-squares estimator to possess desirable properties; in particular, these
assumptions imply that the parameter estimates will be unbiased, consistent, and efficient in the class of linear
unbiased estimators. It is important to note that actual data rarely satisfies the assumptions. That is, the method is
used even though the assumptions are not true. Variation from the assumptions can sometimes be used as a measure
of how far the model is from being useful. Many of these assumptions may be relaxed in more advanced treatments.
Reports of statistical analyses usually include analyses of tests on the sample data and methodology for the fit and
usefulness of the model.
Assumptions include the geometrical support of the variables.[10]Wikipedia:Please clarify Independent and
dependent variables often refer to values measured at point locations. There may be spatial trends and spatial
autocorrelation in the variables that violate statistical assumptions of regression. Geographic weighted regression is
one technique to deal with such data. Also, variables may include values aggregated by areas. With aggregated data
the modifiable areal unit problem can cause extreme variation in regression parameters. When analyzing data
aggregated by political boundaries, postal codes or census areas results may be very distinct with a different choice
of units.

Linear regression
In linear regression, the model specification is that the dependent variable, is a linear combination of the
parameters (but need not be linear in the independent variables). For example, in simple linear regression for
modeling data points there is one independent variable: , and two parameters, and :

straight line: 
In multiple linear regression, there are several independent variables or functions of independent variables.
Adding a term in xi

2 to the preceding regression gives:

parabola: 
This is still linear regression; although the expression on the right hand side is quadratic in the independent variable

, it is linear in the parameters , and 
In both cases, is an error term and the subscript indexes a particular observation.
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Given a random sample from the population, we estimate the population parameters and obtain the sample linear
regression model:

The residual, , is the difference between the value of the dependent variable predicted by the model,
, and the true value of the dependent variable, . One method of estimation is ordinary least squares. This

method obtains parameter estimates that minimize the sum of squared residuals, SSE,[11][12] also sometimes denoted
RSS:

Minimization of this function results in a set of normal equations, a set of simultaneous linear equations in the
parameters, which are solved to yield the parameter estimators, .

Illustration of linear regression on a data set.

In the case of simple regression, the
formulas for the least squares estimates are

where is the mean (average) of the 
values and is the mean of the values.

Under the assumption that the population
error term has a constant variance, the
estimate of that variance is given by:

This is called the mean square error (MSE)
of the regression. The denominator is the
sample size reduced by the number of model
parameters estimated from the same data, (n-p) for p regressors or (n-p-1) if an intercept is used.[13] In this case, p=1
so the denominator is n-2.

The standard errors of the parameter estimates are given by

Under the further assumption that the population error term is normally distributed, the researcher can use these
estimated standard errors to create confidence intervals and conduct hypothesis tests about the population
parameters.
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General linear model
In the more general multiple regression model, there are p independent variables:

where xij is the ith observation on the jth independent variable, and where the first independent variable takes the
value 1 for all i (so is the regression intercept).
The least squares parameter estimates are obtained from p normal equations. The residual can be written as

The normal equations are

In matrix notation, the normal equations are written as

where the ij element of X is xij, the i element of the column vector Y is yi, and the j element of is . Thus X is

n×p, Y is n×1, and is p×1. The solution is

Diagnostics
Once a regression model has been constructed, it may be important to confirm the goodness of fit of the model and
the statistical significance of the estimated parameters. Commonly used checks of goodness of fit include the
R-squared, analyses of the pattern of residuals and hypothesis testing. Statistical significance can be checked by an
F-test of the overall fit, followed by t-tests of individual parameters.
Interpretations of these diagnostic tests rest heavily on the model assumptions. Although examination of the
residuals can be used to invalidate a model, the results of a t-test or F-test are sometimes more difficult to interpret if
the model's assumptions are violated. For example, if the error term does not have a normal distribution, in small
samples the estimated parameters will not follow normal distributions and complicate inference. With relatively
large samples, however, a central limit theorem can be invoked such that hypothesis testing may proceed using
asymptotic approximations.

"Limited dependent" variables
The phrase "limited dependent" is used in econometric statistics for categorical and constrained variables.
The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or
one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability
model. Nonlinear models for binary dependent variables include the probit and logit model. The multivariate probit
model is a standard method of estimating a joint relationship between several binary dependent variables and some
independent variables. For categorical variables with more than two values there is the multinomial logit. For ordinal
variables with more than two values, there are the ordered logit and ordered probit models. Censored regression
models may be used when the dependent variable is only sometimes observed, and Heckman correction type models
may be used when the sample is not randomly selected from the population of interest. An alternative to such
procedures is linear regression based on polychoric correlation (or polyserial correlations) between the categorical
variables. Such procedures differ in the assumptions made about the distribution of the variables in the population. If
the variable is positive with low values and represents the repetition of the occurrence of an event, then count models
like the Poisson regression or the negative binomial model may be used instead.
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Interpolation and extrapolation
Regression models predict a value of the Y variable given known values of the X variables. Prediction within the
range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this
range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.
The further the extrapolation goes outside the data, the more room there is for the model to fail due to differences
between the assumptions and the sample data or the true values.
It is generally advised [citation needed] that when performing extrapolation, one should accompany the estimated value
of the dependent variable with a prediction interval that represents the uncertainty. Such intervals tend to expand
rapidly as the values of the independent variable(s) moved outside the range covered by the observed data.
For such reasons and others, some tend to say that it might be unwise to undertake extrapolation.[14]

However, this does not cover the full set of modelling errors that may be being made: in particular, the assumption of
a particular form for the relation between Y and X. A properly conducted regression analysis will include an
assessment of how well the assumed form is matched by the observed data, but it can only do so within the range of
values of the independent variables actually available. This means that any extrapolation is particularly reliant on the
assumptions being made about the structural form of the regression relationship. Best-practice advice here[citation

needed] is that a linear-in-variables and linear-in-parameters relationship should not be chosen simply for
computational convenience, but that all available knowledge should be deployed in constructing a regression model.
If this knowledge includes the fact that the dependent variable cannot go outside a certain range of values, this can be
made use of in selecting the model – even if the observed dataset has no values particularly near such bounds. The
implications of this step of choosing an appropriate functional form for the regression can be great when
extrapolation is considered. At a minimum, it can ensure that any extrapolation arising from a fitted model is
"realistic" (or in accord with what is known).

Nonlinear regression
When the model function is not linear in the parameters, the sum of squares must be minimized by an iterative
procedure. This introduces many complications which are summarized in Differences between linear and non-linear
least squares

Power and sample size calculations
There are no generally agreed methods for relating the number of observations versus the number of independent
variables in the model. One rule of thumb suggested by Good and Hardin is , where is the sample
size, is the number of independent variables and is the number of observations needed to reach the desired
precision if the model had only one independent variable. For example, a researcher is building a linear regression
model using a dataset that contains 1000 patients ( ). If he decides that five observations are needed to precisely
define a straight line ( ), then the maximum number of independent variables his model can support is 4, because

.
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Other methods
Although the parameters of a regression model are usually estimated using the method of least squares, other
methods which have been used include:
• Bayesian methods, e.g. Bayesian linear regression
• Percentage regression, for situations where reducing percentage errors is deemed more appropriate.
• Least absolute deviations, which is more robust in the presence of outliers, leading to quantile regression
• Nonparametric regression, requires a large number of observations and is computationally intensive
• Distance metric learning, which is learned by the search of a meaningful distance metric in a given input space.

Software
All major statistical software packages perform least squares regression analysis and inference. Simple linear
regression and multiple regression using least squares can be done in some spreadsheet applications and on some
calculators. While many statistical software packages can perform various types of nonparametric and robust
regression, these methods are less standardized; different software packages implement different methods, and a
method with a given name may be implemented differently in different packages. Specialized regression software
has been developed for use in fields such as survey analysis and neuroimaging.
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Path analysis (statistics)
In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes
models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis,
discriminant analysis, as well as more general families of models in the multivariate analysis of variance and
covariance analyses (MANOVA, ANOVA, ANCOVA).
In addition to being thought of as a form of multiple regression focusing on causality, path analysis can be viewed as
a special case of structural equation modeling (SEM) – one in which only single indicators are employed for each of
the variables in the causal model. That is, path analysis is SEM with a structural model, but no measurement model.
Other terms used to refer to path analysis include causal modeling, analysis of covariance structures, and latent
variable models.

History
Path analysis was developed around 1918 by geneticist Sewall Wright, who wrote about it more extensively in the
1920s. It has since been applied to a vast array of complex modeling areas, including biology, sociology, and
econometrics.[1]

Path modeling
In the model below, the two exogenous variables (Ex1 and Ex2) are modeled as being correlated and as having both
direct and indirect (through En1) effects on En2 (the two dependent or 'endogenous' variables). In most real models,
the endogenous variables are also affected by factors outside the model (including measurement error). The effects
of such extraneous variables are depicted by the "e" or error terms in the model.

Using the same variables, alternative models are conceivable. For example, it may be hypothesized that Ex1 has only
an indirect effect on En2, deleting the arrow from Ex1 to En2; and the likelihood or 'fit' of these two models can be
compared statistically.
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Path tracing rules
In order to validly calculate the relationship between any two boxes in the diagram, Wright (1934) proposed a simple
set of path tracing rules, for calculating the correlation between two variables. The correlation is equal to the sum of
the contribution of all the pathways through which the two variables are connected. The strength of each of these
contributing pathways is calculated as the product of the path-coefficients along that pathway.
The rules for path tracing are:
1.1. You can trace backward up an arrow and then forward along the next, or forwards from one variable to the other,

but never forward and then back.
2.2. You can pass through each variable only once in a given chain of paths.
3.3. No more than one bi-directional arrow can be included in each path-chain.
Another way to think of rule one is that you can never pass out of one arrow head and into another arrowhead:
heads-tails, or tails-heads, not heads-heads.
Again, the expected correlation due to each chain traced between two variables is the product of the standardized
path coefficients, and the total expected correlation between two variables is the sum of these contributing
path-chains.
NB: Wright's rules assume a model without feedback loops: the directed graph of the model must contain no cycles.

Path tracing in unstandardized models
If the modeled variables have not been standardized, an additional rule allows the expected covariances to be
calculated as long as no paths exist connecting dependent variables to other dependent variables.
The simplest case obtains where all residual variances are modeled explicitly. In this case, in addition to the three
rules above, calculate expected covariances by:
1.1. Compute the product of coefficients in each route between the variables of interest, tracing backwards, changing

direction at a two-headed arrow, then tracing forwards.
2.2. Sum over all distinct routes, where pathways are considered distinct if they contain different coefficients, or

encounter those coefficients in a different order.
Where residual variances are not explicitly included, or as a more general solution, at any change of direction
encountered in a route (except for at two-way arrows), include the variance of the variable at the point of change.
That is, in tracing a path from a dependent variable to an independent variable, include the variance of the
independent-variable except where so doing would violate rule 1 above (passing through adjacent arrowheads: i.e.,
when the independent variable also connects to a double-headed arrow connecting it to another independent
variable). In deriving variances (which is necessary in the case where they are not modeled explicitly), the path from
a dependent variable into an independent variable and back is counted once only.

References
[1] Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms. OUP. ISBN 0-19-920613-9
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Analysis

Moving average
In statistics, a moving average (rolling average or running average)
is a calculation to analyze data points by creating a series of averages
of different subsets of the full data set. It is also called a moving mean
(MM)[1] or rolling mean and is a type of finite impulse response filter.
Variations include: simple, and cumulative, or weighted forms
(described below).

Given a series of numbers and a fixed subset size, the first element of
the moving average is obtained by taking the average of the initial
fixed subset of the number series. Then the subset is modified by
"shifting forward"; that is, excluding the first number of the series and including the next number following the
original subset in the series. This creates a new subset of numbers, which is averaged. This process is repeated over
the entire data series. The plot line connecting all the (fixed) averages is the moving average. A moving average is a
set of numbers, each of which is the average of the corresponding subset of a larger set of datum points. A moving
average may also use unequal weights for each datum value in the subset to emphasize particular values in the
subset.

A moving average is commonly used with time series data to smooth out short-term fluctuations and highlight
longer-term trends or cycles. The threshold between short-term and long-term depends on the application, and the
parameters of the moving average will be set accordingly. For example, it is often used in technical analysis of
financial data, like stock prices, returns or trading volumes. It is also used in economics to examine gross domestic
product, employment or other macroeconomic time series. Mathematically, a moving average is a type of
convolution and so it can be viewed as an example of a low-pass filter used in signal processing. When used with
non-time series data, a moving average filters higher frequency components without any specific connection to time,
although typically some kind of ordering is implied. Viewed simplistically it can be regarded as smoothing the data.

Simple moving average

In financial applications a simple moving average (SMA) is the
unweighted mean of the previous n datum points. However, in science
and engineering the mean is normally taken from an equal number of
data on either side of a central value. This ensures that variations in the
mean are aligned with the variations in the data rather than being
shifted in time. An example of a simple equally weighted running
mean for a n-day sample of closing price is the mean of the previous n
days' closing prices. If those prices are 
then the formula is

When calculating successive values, a new value comes into the sum and an old value drops out, meaning a full
summation each time is unnecessary for this simple case,
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The period selected depends on the type of movement of interest, such as short, intermediate, or long-term. In
financial terms moving-average levels can be interpreted as support in a rising market, or resistance in a falling
market.
If the data used are not centered around the mean, a simple moving average lags behind the latest datum point by
half the sample width. An SMA can also be disproportionately influenced by old datum points dropping out or new
data coming in. One characteristic of the SMA is that if the data have a periodic fluctuation, then applying an SMA
of that period will eliminate that variation (the average always containing one complete cycle). But a perfectly
regular cycle is rarely encountered.[2]

For a number of applications, it is advantageous to avoid the shifting induced by using only 'past' data. Hence a
central moving average can be computed, using data equally spaced on either side of the point in the series where
the mean is calculated. This requires using an odd number of datum points in the sample window.
A major drawback of the SMA is that it lets though a significant amount of the signal shorter than the window
length. Worse, it actually inverts it. This can lead to unexpected artifacts, such as peaks in the "smoothed" result
appearing where there were troughs in the data. It also leads to the result being less "smooth" than expected since
some of the higher frequencies are not properly removed.
The problem can be over-come by repeating the process three times with the window being shortened by a factor of
1.4303 at each step.[3] This removes the negation effects and provides a well-behaved filter. This solution is often
used in real-time audio filtering since it is computationally quicker than other comparable filters such as a gaussian
kernel.
An example of inversion defect in SMA and the application of repeating SMA to avoid it can be illustrated here:
http:/ / www. woodfortrees. org/ plot/ rss/ from:1980/ plot/ rss/ from:1980/ mean:60/ plot/ rss/ from:1980/ mean:30/
mean:22/ mean:17

Cumulative moving average
In a cumulative moving average, the data arrive in an ordered datum stream, and the user would like to get the
average of all of the data up until the current datum point. For example, an investor may want the average price of all
of the stock transactions for a particular stock up until the current time. As each new transaction occurs, the average
price at the time of the transaction can be calculated for all of the transactions up to that point using the cumulative
average, typically an equally weighted average of the sequence of i values x1, ..., xi up to the current time:

The brute-force method to calculate this would be to store all of the data and calculate the sum and divide by the
number of datum points every time a new datum point arrived. However, it is possible to simply update cumulative
average as a new value, xi+1 becomes available, using the formula:

where can be taken to be equal to 0.
Thus the current cumulative average for a new datum point is equal to the previous cumulative average, times i, plus
the latest datum point, all divided by the number of points received so far, i+1. When all of the datum points arrive (i
= N), then the cumulative average will equal the final average.
The derivation of the cumulative average formula is straightforward. Using

and similarly for i + 1, it is seen that
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Solving this equation for CAi+1 results in:

Weighted moving average
A weighted average is any average that has multiplying factors to give different weights to data at different positions
in the sample window. Mathematically, the moving average is the convolution of the datum points with a fixed
weighting function. One application is removing pixelisation from a digital graphical image.
In technical analysis of financial data, a weighted moving average (WMA) has the specific meaning of weights that
decrease in arithmetical progression. In an n-day WMA the latest day has weight n, the second latest n − 1, etc.,
down to one.

WMA weights n = 15

The denominator is a triangle number equal to In the more

general case the denominator will always be the sum of the individual
weights.
When calculating the WMA across successive values, the difference
between the numerators of WMAM+1 and WMAM is
npM+1 − pM − ⋅⋅⋅ − pM−n+1. If we denote the sum pM + ⋅⋅⋅ + pM−n+1 by
TotalM, then

The graph at the right shows how the weights decrease, from highest weight for the most recent datum points, down
to zero. It can be compared to the weights in the exponential moving average which follows.

Exponential moving average

EMA weights N=15

An exponential moving average (EMA), also known as an
exponentially weighted moving average (EWMA),[4] is a type of
infinite impulse response filter that applies weighting factors which
decrease exponentially. The weighting for each older datum decreases
exponentially, never reaching zero. The graph at right shows an
example of the weight decrease.

The EMA for a series Y may be calculated recursively:

for 
Where:

• The coefficient α represents the degree of weighting decrease, a constant smoothing factor between 0 and 1. A
higher α discounts older observations faster.

• Yt is the value at a time period t.
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• St is the value of the EMA at any time period t.
S1 is undefined. S1 may be initialized in a number of different ways, most commonly by setting S1 to Y1, though
other techniques exist, such as setting S1 to an average of the first 4 or 5 observations. The importance of the S1
initialisations effect on the resultant moving average depends on α; smaller α values make the choice of S1 relatively
more important than larger α values, since a higher α discounts older observations faster.
Whatever is done for S1 it assumes something about values prior to the available data and is necessarily in error. In
view of this the early results should be regarded as unreliable until the iterations have had time to converge. This is
sometimes called a 'spin-up' interval. One way to assess when it can be regarded as reliable is consider the required
accuracy of the result. For example, if 3% accuracy is required, initialising with Y1 and taking data after five time
constants (defined above) will ensure that the calculation has converged to within 3% (only <3% of Y1 will remain in
the result ). Sometimes with very small alpha, this can mean little of the result is useful. This is analogous to the
problem of using a convolution filter (such as a weighted average) with a very long window.
This formulation is according to Hunter (1986).[5] By repeated application of this formula for different times, we can
eventually write St as a weighted sum of the datum points Yt, as:

for any suitable k = 0, 1, 2, ... The weight of the general datum point is .
An alternate approach by Roberts (1959) uses Yt in lieu of Yt−1:[6]

This formula can also be expressed in technical analysis terms as follows, showing how the EMA steps towards the
latest datum point, but only by a proportion of the difference (each time):

Expanding out each time results in the following power series, showing how the weighting factor on
each datum point p1, p2, etc., decreases exponentially:

where

• is 
• is 
•• and so on

,

since .
This is an infinite sum with decreasing terms.
The N periods in an N-day EMA only specify the α factor. N is not a stopping point for the calculation in the way it
is in an SMA or WMA. For sufficiently large N, the first N datum points in an EMA represent about 86% of the total
weight in the calculation when :[7]

i.e. simplified,[8] tends to .

The above discussion requires a bit of clarification. The sum of the weights of all the terms (i.e., infinite number of 
terms) in an exponential moving average is 1. The sum of the weights of terms is . Both of 
these sums can be derived by using the formula for the sum of a geometric series. The weight omitted after terms 
is given by subtracting this from 1, and you get (this is essentially the
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formula given below for the weight omitted). Note that there is no "accepted" value that should be chosen for 
although there are some recommended values based on the application. In the above discussion, we have substituted
a commonly used value for in the formula for the weight of terms. This value for comes from setting the average age
of the data from a SMA equal to the average age of the data from an EWA and solving for . Again, it is just a
recommendation—not a requirement. If you make this substitution, and you make use of[9] , then you get the 0.864

approximation. Intuitively, what this is telling us is that the weight after terms of an `` -period" exponential moving
average converges to 0.864.
The power formula above gives a starting value for a particular day, after which the successive days formula shown
first can be applied. The question of how far back to go for an initial value depends, in the worst case, on the data.
Large price values in old data will affect on the total even if their weighting is very small. If prices have small
variations then just the weighting can be considered. The weight omitted by stopping after k terms is

which is

i.e. a fraction

out of the total weight.
For example, to have 99.9% of the weight, set above ratio equal to 0.1% and solve for k:

terms should be used. Since approaches as N increases,[10] this simplifies to

approximately[11]

for this example (99.9% weight).

Modified moving average
A modified moving average (MMA), running moving average (RMA), or smoothed moving average is defined
as:

In short, this is an exponential moving average, with .

Application to measuring computer performance
Some computer performance metrics, e.g. the average process queue length, or the average CPU utilization, use a
form of exponential moving average.
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Here is defined as a function of time between two readings. An example of a coefficient giving bigger weight to
the current reading, and smaller weight to the older readings is

where exp() is the exponential function, time for readings tn is expressed in seconds, and is the period of time in
minutes over which the reading is said to be averaged (the mean lifetime of each reading in the average). Given the
above definition of , the moving average can be expressed as

For example, a 15-minute average L of a process queue length Q, measured every 5 seconds (time difference is 5
seconds), is computed as

Other weightings
Other weighting systems are used occasionally – for example, in share trading a volume weighting will weight each
time period in proportion to its trading volume.
A further weighting, used by actuaries, is Spencer's 15-Point Moving Average[12] (a central moving average). The
symmetric weight coefficients are −3, −6, −5, 3, 21, 46, 67, 74, 67, 46, 21, 3, −5, −6, −3.
Outside the world of finance, weighted running means have many forms and applications. Each weighting function
or "kernel" has its own characteristics. In engineering and science the frequency and phase response of the filter is
often of primary importance in understanding the desired and undesired distortions that a particular filter will apply
to the data.
A mean does not just "smooth" the data. A mean is a form of low-pass filter. The effects of the particular filter used
should be understood in order to make an appropriate choice. On this point, the French version of this article
discusses the spectral effects of 3 kinds of means (cumulative, exponential, Gaussian).

Moving median
From a statistical point of view, the moving average, when used to estimate the underlying trend in a time series, is
susceptible to rare events such as rapid shocks or other anomalies. A more robust estimate of the trend is the simple
moving median over n time points:

where the median is found by, for example, sorting the values inside the brackets and finding the value in the middle.
For larger values of n, the median can be efficiently computed by updating an indexable skiplist.[13]

Statistically, the moving average is optimal for recovering the underlying trend of the time series when the
fluctuations about the trend are normally distributed. However, the normal distribution does not place high
probability on very large deviations from the trend which explains why such deviations will have a
disproportionately large effect on the trend estimate. It can be shown that if the fluctuations are instead assumed to
be Laplace distributed, then the moving median is statistically optimal.[14] For a given variance, the Laplace
distribution places higher probability on rare events than does the normal, which explains why the moving median
tolerates shocks better than the moving mean.
When the simple moving median above is central, the smoothing is identical to the median filter which has
applications in, for example, image signal processing.

https://en.wikipedia.org/w/index.php?title=Exponential_function
https://en.wikipedia.org/w/index.php?title=Skip_list%23Indexable_skiplist
https://en.wikipedia.org/w/index.php?title=Laplace_distribution
https://en.wikipedia.org/w/index.php?title=Median_filter


Moving average 162

Notes and references
[1] Hydrologic Variability of the Cosumnes River Floodplain (http:/ / www. waterboards. ca. gov/ waterrights/ water_issues/ programs/

bay_delta/ docs/ cmnt091412/ sldmwa/ booth_et_al_2006. pdf) (Booth et. al., San Francisco Estuary and Watershed Science, Volume 4, Issue
2, 2006)

[2] Statistical Analysis, Ya-lun Chou, Holt International, 1975, ISBN 0-03-089422-0, section 17.9.
[3] http:/ / climategrog. wordpress. com/ 2013/ 05/ 19/ triple-running-mean-filters/
[4] http:/ / lorien. ncl. ac. uk/ ming/ filter/ filewma. htm
[5] NIST/SEMATECH e-Handbook of Statistical Methods: Single Exponential Smoothing (http:/ / www. itl. nist. gov/ div898/ handbook/ pmc/

section4/ pmc431. htm) at the National Institute of Standards and Technology
[6] NIST/SEMATECH e-Handbook of Statistical Methods: EWMA Control Charts (http:/ / www. itl. nist. gov/ div898/ handbook/ pmc/

section3/ pmc324. htm) at the National Institute of Standards and Technology
[7] The denominator on the left-hand side should be unity, and the numerator will become the right-hand side (geometric series),

UNIQ-math-0-efccba492c5c7a1c-QINU .
[8] Because (1+x/n)n tends to the limit ex for large n.
[9] See the following link (http:/ / options-trading-notes. blogspot. com/ 2013/ 06/ derivation-of-ea. html) for a proof.

[10] It means -> 0, and the Taylor series of is

equivalent to .

[11] loge(0.001) / 2 = -3.45
[12] Spencer's 15-Point Moving Average — from Wolfram MathWorld (http:/ / mathworld. wolfram. com/ Spencers15-PointMovingAverage.

html)
[13] http:/ / code. activestate. com/ recipes/ 576930/
[14][14] G.R. Arce, "Nonlinear Signal Processing: A Statistical Approach", Wiley:New Jersey, USA, 2005.

Student's t-test
A t-test is any statistical hypothesis test in which the test statistic follows a Student's t distribution if the null
hypothesis is supported. It can be used to determine if two sets of data are significantly different from each other,
and is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling
term in the test statistic were known. When the scaling term is unknown and is replaced by an estimate based on the
data, the test statistic (under certain conditions) follows a Student's t distribution.

History
The t-statistic was introduced in 1908 by William Sealy Gosset, a chemist working for the Guinness brewery in
Dublin, Ireland ("Student" was his pen name).[1][2] Gosset had been hired due to Claude Guinness's policy of
recruiting the best graduates from Oxford and Cambridge to apply biochemistry and statistics to Guinness's industrial
processes. Gosset devised the t-test as a cheap way to monitor the quality of stout. The student t-test work was
submitted to and accepted in the journal Biometrika, the journal that Karl Pearson had co-founded and was the
Editor-in-Chief; the article was published in 1908. Company policy at Guinness forbade its chemists from publishing
their findings, so Gosset published his mathematical work under the pseudonym "Student". Actually, Guinness had a
policy of allowing technical staff leave for study (so-called study leave), which Gosset used during the first two
terms of the 1906-1907 academic year in Professor Karl Pearson's Biometric Laboratory at University College
London. Gosset's identity was then known to fellow statisticians and the Editor-in-Chief Karl Pearson. It is not clear
how much of the work Gosset performed while he was at Guinness and how much was done when he was on study
leave at University College London.
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Uses
Among the most frequently used t-tests are:
• A one-sample location test of whether the mean of a population has a value specified in a null hypothesis.
• A two-sample location test of the null hypothesis that the means of two populations are equal. All such tests are

usually called Student's t-tests, though strictly speaking that name should only be used if the variances of the two
populations are also assumed to be equal; the form of the test used when this assumption is dropped is sometimes
called Welch's t-test. These tests are often referred to as "unpaired" or "independent samples" t-tests, as they are
typically applied when the statistical units underlying the two samples being compared are non-overlapping.

• A test of the null hypothesis that the difference between two responses measured on the same statistical unit has a
mean value of zero. For example, suppose we measure the size of a cancer patient's tumor before and after a
treatment. If the treatment is effective, we expect the tumor size for many of the patients to be smaller following
the treatment. This is often referred to as the "paired" or "repeated measures" t-test: see paired difference test.

• A test of whether the slope of a regression line differs significantly from 0.

Assumptions
Most t-test statistics have the form t = Z/s, where Z and s are functions of the data. Typically, Z is designed to be
sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true),
whereas s is a scaling parameter that allows the distribution of t to be determined.

As an example, in the one-sample t-test Z = , where is the sample mean of the data, is the
sample size, and is the population standard deviation of the data. s is the sample standard deviation.
The assumptions underlying a t-test are that
• Z follows a standard normal distribution under the null hypothesis
• s2 follows a χ2 distribution with p degrees of freedom under the null hypothesis, where p is a positive constant
• Z and s are independent.
In a specific type of t-test, these conditions are consequences of the population being studied, and of the way in
which the data are sampled. For example, in the t-test comparing the means of two independent samples, the
following assumptions should be met:
• Each of the two populations being compared should follow a normal distribution. This can be tested using a

normality test, such as the Shapiro–Wilk or Kolmogorov–Smirnov test, or it can be assessed graphically using a
normal quantile plot.

• If using Student's original definition of the t-test, the two populations being compared should have the same
variance (testable using F test, Levene's test, Bartlett's test, or the Brown–Forsythe test; or assessable graphically
using a Q–Q plot). If the sample sizes in the two groups being compared are equal, Student's original t-test is
highly robust to the presence of unequal variances. Welch's t-test is insensitive to equality of the variances
regardless of whether the sample sizes are similar.

• The data used to carry out the test should be sampled independently from the two populations being compared.
This is in general not testable from the data, but if the data are known to be dependently sampled (i.e. if they were
sampled in clusters), then the classical t-tests discussed here may give misleading results.
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Unpaired and paired two-sample t-tests
Two-sample t-tests for a difference in mean involve independent samples, paired samples and overlapping samples.
Paired t-tests are a form of blocking, and have greater power than unpaired tests when the paired units are similar
with respect to "noise factors" that are independent of membership in the two groups being compared.[3] In a
different context, paired t-tests can be used to reduce the effects of confounding factors in an observational study.

Independent (unpaired) samples
The independent samples t-test is used when two separate sets of independent and identically distributed samples are
obtained, one from each of the two populations being compared. For example, suppose we are evaluating the effect
of a medical treatment, and we enroll 100 subjects into our study, then randomly assign 50 subjects to the treatment
group and 50 subjects to the control group. In this case, we have two independent samples and would use the
unpaired form of the t-test. The randomization is not essential here – if we contacted 100 people by phone and
obtained each person's age and gender, and then used a two-sample t-test to see whether the mean ages differ by
gender, this would also be an independent samples t-test, even though the data are observational.

Paired samples
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has
been tested twice (a "repeated measures" t-test).
A typical example of the repeated measures t-test would be where subjects are tested prior to a treatment, say for
high blood pressure, and the same subjects are tested again after treatment with a blood-pressure lowering
medication. By comparing the same patient's numbers before and after treatment, we are effectively using each
patient as their own control. That way the correct rejection of the null hypothesis (here: of no difference made by the
treatment) can become much more likely, with statistical power increasing simply because the random
between-patient variation has now been eliminated. Note however that an increase of statistical power comes at a
price: more tests are required, each subject having to be tested twice. Because half of the sample now depends on the
other half, the paired version of Student's t-test has only 'n/2 - 1' degrees of freedom (with 'n' being the total number
of observations). Pairs become individual test units, and the sample has to be doubled to achieve the same number of
degrees of freedom.
A paired samples t-test based on a "matched-pairs sample" results from an unpaired sample that is subsequently used
to form a paired sample, by using additional variables that were measured along with the variable of interest. The
matching is carried out by identifying pairs of values consisting of one observation from each of the two samples,
where the pair is similar in terms of other measured variables. This approach is sometimes used in observational
studies to reduce or eliminate the effects of confounding factors.
Paired samples t-tests are often referred to as "dependent samples t-tests" (as are t-tests on overlapping samples).
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Overlapping samples
An overlapping samples t-test is used when there are paired samples with data missing in one or the other samples
(e.g., due to selection of "Don't know" options in questionnaires or because respondents are randomly assigned to a
subset question). These tests are widely used in commercial survey research (e.g., by polling companies) and are
available in many standard crosstab software packages.

Calculations
Explicit expressions that can be used to carry out various t-tests are given below. In each case, the formula for a test
statistic that either exactly follows or closely approximates a t-distribution under the null hypothesis is given. Also,
the appropriate degrees of freedom are given in each case. Each of these statistics can be used to carry out either a
one-tailed test or a two-tailed test.
Once a t value is determined, a p-value can be found using a table of values from Student's t-distribution. If the
calculated p-value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level),
then the null hypothesis is rejected in favor of the alternative hypothesis.

One-sample t-test
In testing the null hypothesis that the population mean is equal to a specified value μ0, one uses the statistic

where is the sample mean, s is the sample standard deviation of the sample and n is the sample size. The degrees
of freedom used in this test are n − 1. Although the parent population does not need to be normally distributed, the
distribution of the population of sample means, , is assumed to be normal. By the central limit theorem, if the
sampling of the parent population is random then the sample means will be approximately normal.[4] (The degree of
approximation will depend on how close the parent population is to a normal distribution and the sample size, n.)

Slope of a regression line
Suppose one is fitting the model

where xi, i = 1, ..., n are known, α and β are unknown, and εi are independent identically normally distributed random
errors with expected value 0 and unknown variance σ2, and Yi, i = 1, ..., n are observed. It is desired to test the null
hypothesis that the slope β is equal to some specified value β0 (often taken to be 0, in which case the hypothesis is
that x and y are unrelated).
Let

Then

has a t-distribution with n − 2 degrees of freedom if the null hypothesis is true. The standard error of the slope
coefficient:
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can be written in terms of the residuals. Let

Then is given by:

Independent two-sample t-test

Equal sample sizes, equal variance

This test is only used when both:
• the two sample sizes (that is, the number, n, of participants of each group) are equal;
•• it can be assumed that the two distributions have the same variance.
Violations of these assumptions are discussed below.
The t statistic to test whether the means are different can be calculated as follows:

where

Here is the grand standard deviation (or pooled standard deviation), 1 = group one, 2 = group two. and
are the unbiased estimators of the variances of the two samples. The denominator of t is the standard error of

the difference between two means.
For significance testing, the degrees of freedom for this test is 2n − 2 where n is the number of participants in each
group.

Unequal sample sizes, equal variance

This test is used only when it can be assumed that the two distributions have the same variance. (When this
assumption is violated, see below.) The t statistic to test whether the means are different can be calculated as follows:

where

Note that the formulae above are generalizations of the case where both samples have equal sizes (substitute n for n1
and n2).

is an estimator of the common standard deviation of the two samples: it is defined in this way so that its
square is an unbiased estimator of the common variance whether or not the population means are the same. In these
formulae, n = number of participants, 1 = group one, 2 = group two. n − 1 is the number of degrees of freedom for
either group, and the total sample size minus two (that is, n1 + n2 − 2) is the total number of degrees of freedom,
which is used in significance testing.
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Equal or Unequal sample sizes, unequal variances

This test, also known as Welch's t-test, is used only when the two population variances are not assumed to be equal
(the two sample sizes may or may not be equal) and hence must be estimated separately. The t statistic to test
whether the population means are different is calculated as:

where

Here s2 is the unbiased estimator of the variance of the two samples, ni = number of participants in group i, i=1 or 2.
Note that in this case is not a pooled variance. For use in significance testing, the distribution of the test

statistic is approximated as an ordinary Student's t distribution with the degrees of freedom calculated using

This is known as the Welch–Satterthwaite equation. The true distribution of the test statistic actually depends
(slightly) on the two unknown population variances (see Behrens–Fisher problem).

Dependent t-test for paired samples
This test is used when the samples are dependent; that is, when there is only one sample that has been tested twice
(repeated measures) or when there are two samples that have been matched or "paired". This is an example of a
paired difference test.

For this equation, the differences between all pairs must be calculated. The pairs are either one person's pre-test and
post-test scores or between pairs of persons matched into meaningful groups (for instance drawn from the same
family or age group: see table). The average (XD) and standard deviation (sD) of those differences are used in the
equation. The constant μ0 is non-zero if you want to test whether the average of the difference is significantly
different from μ0. The degree of freedom used is n − 1.

Example of repeated measures

Number Name Test 1 Test 2

1 Mike 35% 67%

2 Melanie 50% 46%

3 Melissa 90% 86%

4 Mitchell 78% 91%
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Example of matched pairs

Pair Name Age Test

1 John 35 250

1 Jane 36 340

2 Jimmy 22 460

2 Jessy 21 200

Worked examples
Let A1 denote a set obtained by taking 6 random samples out of a larger set:

and let A2 denote a second set obtained similarly:

These could be, for example, the weights of screws that were chosen out of a bucket.
We will carry out tests of the null hypothesis that the means of the populations from which the two samples were
taken are equal.

The difference between the two sample means, each denoted by , which appears in the numerator for all the
two-sample testing approaches discussed above, is

The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small
samples, a test of equality between the two population variances would not be very powerful. Since the sample sizes
are equal, the two forms of the two sample t-test will perform similarly in this example.

Unequal variances
If the approach for unequal variances (discussed above) is followed, the results are

and

The test statistic is approximately 1.959. The two-tailed test p-value is approximately 0.091 and the one-tailed
p-value is approximately 0.045.

Equal variances
If the approach for equal variances (discussed above) is followed, the results are

and

Since the sample sizes are equal (both are 6), the test statistic is again approximately equal to 1.959. Since the
degrees of freedom is different from what it is in the unequal variances test, the p-values will differ slightly from
what was found above. Here, the two-tailed p-value is approximately 0.078, and the one-tailed p-value is
approximately 0.039. Thus if there is good reason to believe that the population variances are equal, the results
become somewhat more suggestive of a difference in the mean weights for the two populations of screws.
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Alternatives to the t-test for location problems
The t-test provides an exact test for the equality of the means of two normal populations with unknown, but equal,
variances. (The Welch's t-test is a nearly exact test for the case where the data are normal but the variances may
differ.) For moderately large samples and a one tailed test, the t is relatively robust to moderate violations of the
normality assumption.
For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the
sample variance follows a scaled χ2 distribution, and that the sample mean and sample variance be statistically
independent. Normality of the individual data values is not required if these conditions are met. By the central limit
theorem, sample means of moderately large samples are often well-approximated by a normal distribution even if the
data are not normally distributed. For non-normal data, the distribution of the sample variance may deviate
substantially from a χ2 distribution. However, if the sample size is large, Slutsky's theorem implies that the
distribution of the sample variance has little effect on the distribution of the test statistic. If the data are substantially
non-normal and the sample size is small, the t-test can give misleading results. See Location test for Gaussian scale
mixture distributions for some theory related to one particular family of non-normal distributions.
When the normality assumption does not hold, a non-parametric alternative to the t-test can often have better
statistical power. For example, for two independent samples when the data distributions are asymmetric (that is, the
distributions are skewed) or the distributions have large tails, then the Wilcoxon rank-sum test (also known as the
Mann–Whitney U test) can have three to four times higher power than the t-test. The nonparametric counterpart to
the paired samples t test is the Wilcoxon signed-rank test for paired samples. For a discussion on choosing between
the t and nonparametric alternatives, see Sawilowsky.
One-way analysis of variance generalizes the two-sample t-test when the data belong to more than two groups.

Multivariate testing
A generalization of Student's t statistic, called Hotelling's T-square statistic, allows for the testing of hypotheses on
multiple (often correlated) measures within the same sample. For instance, a researcher might submit a number of
subjects to a personality test consisting of multiple personality scales (e.g. the Minnesota Multiphasic Personality
Inventory). Because measures of this type are usually positively correlated, it is not advisable to conduct separate
univariate t-tests to test hypotheses, as these would neglect the covariance among measures and inflate the chance of
falsely rejecting at least one hypothesis (Type I error). In this case a single multivariate test is preferable for
hypothesis testing. Fisher's Method for combining multiple tests with alpha reduced for positive correlation among
tests is one. Another is Hotelling's T 2 statistic follows a T 2 distribution. However, in practice the distribution is
rarely used, since tabulated values for T 2 are hard to find. Usually, T 2 is converted instead to an F statistic.

One-sample T 2 test
For a one-sample multivariate test, the hypothesis is that the mean vector ( ) is equal to a given vector ( ). The
test statistic is Hotelling's T 2:

where n is the sample size, is the vector of column means and is a  sample covariance matrix.

Two-sample T 2 test
For a two-sample multivariate test, the hypothesis is that the mean vectors ( , ) of two samples are equal. The
test statistic is Hotelling's 2-sampleT 2:
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Software implementations
Many spreadsheet programs and statistics packages, such as QtiPlot, OpenOffice.org Calc, LibreOffice Calc,
Microsoft Excel, SAS, SPSS, Stata, DAP, gretl, R, Python ([5]), PSPP, and Minitab, include implementations of
Student's t-test.

Language/Program Function Notes

Microsoft Excel pre 2010 TTEST(array1, array2, tails, type) See [6]

Microsoft Excel 2010 and later T.TEST(array1, array2, tails, type) See [7]

OpenOffice.org TTEST(data1; data2; mode; type)

Python scipy.stats.ttest_ind(a, b, axis=0, equal_var=True) See [5]

R t.test(data1, data2)

SAS PROC TTEST See [8]

Notes
[1] Richard Mankiewicz, The Story of Mathematics (Princeton University Press), p.158.
[2] http:/ / www. aliquote. org/ cours/ 2012_biomed/ biblio/ Student1908. pdf
[3][3] John A. Rice (2006), Mathematical Statistics and Data Analysis, Third Edition, Duxbury Advanced.
[4][4] George Box, William Hunter, and J. Stuart Hunter, "Statistics for Experimenters", ISBN 978-0471093152, pp. 66-67.
[5] http:/ / docs. scipy. org/ doc/ scipy/ reference/ generated/ scipy. stats. ttest_ind. html
[6] http:/ / office. microsoft. com/ en-us/ excel-help/ ttest-HP005209325. aspx
[7] http:/ / office. microsoft. com/ en-us/ excel-help/ t-test-function-HA102753135. aspx
[8] http:/ / www. sas. com/ offices/ europe/ belux/ pdf/ academic/ ttest. pdf
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External links
• Hazewinkel, Michiel, ed. (2001), "Student test" (http:/ / www. encyclopediaofmath. org/ index. php?title=p/

s090720), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
• A conceptual article on the Student's t-test (http:/ / www. socialresearchmethods. net/ kb/ stat_t. php)

Contingency table
In statistics, a contingency table (also referred to as cross tabulation or cross tab) is a type of table in a matrix
format that displays the (multivariate) frequency distribution of the variables. The term contingency table was first
used by Karl Pearson in "On the Theory of Contingency and Its Relation to Association and Normal Correlation",[1]

part of the Drapers' Company Research Memoirs Biometric Series I published in 1904.
A crucial problem of multivariate statistics is finding (direct-)dependence structure underlying the variables
contained in high dimensional contingency tables. If some of the conditional independences are revealed, then even
the storage of the data can be done in a smarter way (see Lauritzen (2002)). In order to do this one can use
information theory concepts, which gain the information only from the distribution of probability, which can be
expressed easily from the contingency table by the relative frequencies.

Example
Suppose that we have two variables, sex (male or female) and handedness (right- or left-handed). Further suppose
that 100 individuals are randomly sampled from a very large population as part of a study of sex differences in
handedness. A contingency table can be created to display the numbers of individuals who are male and
right-handed, male and left-handed, female and right-handed, and female and left-handed. Such a contingency table
is shown below.

Right-handed Left-handed Total

Males 43 9 52

Females 44 4 48

Totals 87 13 100

The numbers of the males, females, and right- and left-handed individuals are called marginal totals. The grand
total, i.e., the total number of individuals represented in the contingency table, is the number in the bottom right
corner.
The table allows us to see at a glance that the proportion of men who are right-handed is about the same as the
proportion of women who are right-handed although the proportions are not identical. The significance of the
difference between the two proportions can be assessed with a variety of statistical tests including Pearson's
chi-squared test, the G-test, Fisher's exact test, and Barnard's test, provided the entries in the table represent
individuals randomly sampled from the population about which we want to draw a conclusion. If the proportions of
individuals in the different columns vary significantly between rows (or vice versa), we say that there is a
contingency between the two variables. In other words, the two variables are not independent. If there is no
contingency, we say that the two variables are independent.
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this
is called a 2 x 2 contingency table. In principle, any number of rows and columns may be used. There may also be
more than two variables, but higher order contingency tables are difficult to represent on paper. The relation between
ordinal variables, or between ordinal and categorical variables, may also be represented in contingency tables,
although such a practice is rare.
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Measures of association
The degree of association between the two variables can be assessed by a number of coefficients: the simplest is the
phi coefficient defined by

,

where χ2 is derived from Pearson's chi-squared test, and N is the grand total of observations. φ varies from 0
(corresponding to no association between the variables) to 1 or -1 (complete association or complete inverse
association). This coefficient can only be calculated for frequency data represented in 2 x 2 tables. φ can reach a
minimum value -1.00 and a maximum value of 1.00 only when every marginal proportion is equal to .50 (and two
diagonal cells are empty). Otherwise, the phi coefficient cannot reach those minimal and maximal values.[2]

Alternatives include the tetrachoric correlation coefficient (also only applicable to 2 × 2 tables), the contingency
coefficient C, and Cramér's V.
C suffers from the disadvantage that it does not reach a maximum of 1 or the minimum of -1; the highest it can reach
in a 2 x 2 table is .707; the maximum it can reach in a 4 × 4 table is 0.870. It can reach values closer to 1 in
contingency tables with more categories. It should, therefore, not be used to compare associations among tables with
different numbers of categories.[3] Moreover, it does not apply to asymmetrical tables (those where the numbers of
row and columns are not equal).
The formulae for the C and V coefficients are:

and

,

k being the number of rows or the number of columns, whichever is less.
C can be adjusted so it reaches a maximum of 1 when there is complete association in a table of any number of rows

and columns by dividing C by (recall that C only applies to tables in which the number of rows is equal to

the number of columns and therefore equal to k).
The tetrachoric correlation coefficient assumes that the variable underlying each dichotomous measure is normally
distributed.[4] The tetrachoric correlation coefficient provides "a convenient measure of [the Pearson
product-moment] correlation when graduated measurements have been reduced to two categories."[5] The tetrachoric
correlation should not be confused with the Pearson product-moment correlation coefficient computed by assigning,
say, values 0 and 1 to represent the two levels of each variable (which is mathematically equivalent to the phi
coefficient). An extension of the tetrachoric correlation to tables involving variables with more than two levels is the
polychoric correlation coefficient.
The Lambda coefficient is a measure of the strength of association of the cross tabulations when the variables are
measured at the nominal level. Values range from 0 (no association) to 1 (the theoretical maximum possible
association). Asymmetric lambda measures the percentage improvement in predicting the dependent variable.
Symmetric lambda measures the percentage improvement when prediction is done in both directions.
The uncertainty coefficient is another measure for variables at the nominal level.
The values range from -1 (100% negative association, or perfect inversion) to +1 (100% positive association, or
perfect agreement). A value of zero indicates the absence of association.
• Gamma test: No adjustment for either table size or ties.
• Kendall tau: Adjustment for ties.
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• Tau b: For square tables.
• Tau c: For rectangular tables.
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Analysis of variance
Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences between group
means and their associated procedures (such as "variation" among and between groups). In ANOVA setting, the
observed variance in a particular variable is partitioned into components attributable to different sources of variation.
In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal, and
therefore generalizes the t-test to more than two groups. Doing multiple two-sample t-tests would result in an
increased chance of committing a type I error. For this reason, ANOVAs are useful in comparing (testing) three or
more means (groups or variables) for statistical significance.

Motivating example

No fit at all

Fair fit

Very good fit

The analysis of variance can be used as an exploratory tool to explain
observations. A dog show provides an example. A dog show is not a
random sampling of the breed. It is typically limited to dogs that are
male, adult, pure-bred and exemplary. A histogram of dog weights
from a show might plausibly be rather complex, like the yellow-orange
distribution shown in the illustrations. An attempt to explain the weight
distribution by dividing the dog population into groups (young vs
old)(short-haired vs long-haired) would probably be a failure (no fit at
all). The groups (shown in blue) have a large variance and the means
are very close. An attempt to explain the weight distribution by (pet vs
working breed)(less athletic vs more athletic) would probably be
somewhat more successful (fair fit). The heaviest show dogs are likely
to be big strong working breeds. An attempt to explain weight by breed
is likely to produce a very good fit. All Chihuahuas are light and all St
Bernards are heavy. The difference in weights between Setters and
Pointers does not justify separate breeds. The analysis of variance
provides the formal tools to justify these intuitive judgments. A
common use of the method is the analysis of experimental data or the
development of models. The method has some advantages over
correlation: not all of the data must be numeric and one result of the
method is a judgment in the confidence in an explanatory relationship.

Background and terminology

ANOVA is a particular form of statistical hypothesis testing heavily
used in the analysis of experimental data. A statistical hypothesis test is
a method of making decisions using data. A test result (calculated from
the null hypothesis and the sample) is called statistically significant if it
is deemed unlikely to have occurred by chance, assuming the truth of
the null hypothesis. A statistically significant result (when a probability
(p-value) is less than a threshold (significance level)) justifies the rejection of the null hypothesis, but only if the a
priori probability of the null hypothesis is not high.

In the typical application of ANOVA, the null hypothesis is that all groups are simply random samples of the same
population. This implies that all treatments have the same effect (perhaps none). Rejecting the null hypothesis
implies that different treatments result in altered effects.
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By construction, hypothesis testing limits the rate of Type I errors (false positives leading to false scientific claims)
to a significance level. Experimenters also wish to limit Type II errors (false negatives resulting in missed scientific
discoveries). The Type II error rate is a function of several things including sample size (positively correlated with
experiment cost), significance level (when the standard of proof is high, the chances of overlooking a discovery are
also high) and effect size (when the effect is obvious to the casual observer, Type II error rates are low).
The terminology of ANOVA is largely from the statistical design of experiments. The experimenter adjusts factors
and measures responses in an attempt to determine an effect. Factors are assigned to experimental units by a
combination of randomization and blocking to ensure the validity of the results. Blinding keeps the weighing
impartial. Responses show a variability that is partially the result of the effect and is partially random error.
ANOVA is the synthesis of several ideas and it is used for multiple purposes. As a consequence, it is difficult to
define concisely or precisely.
"Classical ANOVA for balanced data does three things at once:
1.1. As exploratory data analysis, an ANOVA is an organization of an additive data decomposition, and its sums of

squares indicate the variance of each component of the decomposition (or, equivalently, each set of terms of a
linear model).

2.2. Comparisons of mean squares, along with F-tests ... allow testing of a nested sequence of models.
3. Closely related to the ANOVA is a linear model fit with coefficient estimates and standard errors."[1]

In short, ANOVA is a statistical tool used in several ways to develop and confirm an explanation for the observed
data.
Additionally:

•• It is computationally elegant and relatively robust against violations of its assumptions.
2.2. ANOVA provides industrial strength (multiple sample comparison) statistical analysis.
3.3. It has been adapted to the analysis of a variety of experimental designs.
As a result: ANOVA "has long enjoyed the status of being the most used (some would say abused) statistical
technique in psychological research."[2] ANOVA "is probably the most useful technique in the field of statistical
inference."[3]

ANOVA is difficult to teach, particularly for complex experiments, with split-plot designs being notorious.[4] In
some cases the proper application of the method is best determined by problem pattern recognition followed by the
consultation of a classic authoritative test.[5]

Design-of-experiments terms
(Condensed from the NIST Engineering Statistics handbook: Section 5.7. A Glossary of DOE Terminology.)
Balanced design

An experimental design where all cells (i.e. treatment combinations) have the same number of observations.
Blocking

A schedule for conducting treatment combinations in an experimental study such that any effects on the
experimental results due to a known change in raw materials, operators, machines, etc., become concentrated
in the levels of the blocking variable. The reason for blocking is to isolate a systematic effect and prevent it
from obscuring the main effects. Blocking is achieved by restricting randomization.

Design
A set of experimental runs which allows the fit of a particular model and the estimate of effects.

DOE
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Design of experiments. An approach to problem solving involving collection of data that will support valid,
defensible, and supportable conclusions.

Effect
How changing the settings of a factor changes the response. The effect of a single factor is also called a main
effect.

Error
Unexplained variation in a collection of observations. DOE's typically require understanding of both random
error and lack of fit error.

Experimental unit
The entity to which a specific treatment combination is applied.

Factors
Process inputs an investigator manipulates to cause a change in the output.

Lack-of-fit error
Error that occurs when the analysis omits one or more important terms or factors from the process model.
Including replication in a DOE allows separation of experimental error into its components: lack of fit and
random (pure) error.

Model
Mathematical relationship which relates changes in a given response to changes in one or more factors.

Random error
Error that occurs due to natural variation in the process. Random error is typically assumed to be normally
distributed with zero mean and a constant variance. Random error is also called experimental error.

Randomization
A schedule for allocating treatment material and for conducting treatment combinations in a DOE such that the
conditions in one run neither depend on the conditions of the previous run nor predict the conditions in the
subsequent runs.[6]

Replication
Performing the same treatment combination more than once. Including replication allows an estimate of the
random error independent of any lack of fit error.

Responses
The output(s) of a process. Sometimes called dependent variable(s).

Treatment
A treatment is a specific combination of factor levels whose effect is to be compared with other treatments.
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Classes of models
There are three classes of models used in the analysis of variance, and these are outlined here.

Fixed-effects models
The fixed-effects model of analysis of variance applies to situations in which the experimenter applies one or more
treatments to the subjects of the experiment to see if the response variable values change. This allows the
experimenter to estimate the ranges of response variable values that the treatment would generate in the population
as a whole.

Random-effects models
Random effects models are used when the treatments are not fixed. This occurs when the various factor levels are
sampled from a larger population. Because the levels themselves are random variables, some assumptions and the
method of contrasting the treatments (a multi-variable generalization of simple differences) differ from the
fixed-effects model.[7]

Mixed-effects models
A mixed-effects model contains experimental factors of both fixed and random-effects types, with appropriately
different interpretations and analysis for the two types.
Example: Teaching experiments could be performed by a university department to find a good introductory
textbook, with each text considered a treatment. The fixed-effects model would compare a list of candidate texts.
The random-effects model would determine whether important differences exist among a list of randomly selected
texts. The mixed-effects model would compare the (fixed) incumbent texts to randomly selected alternatives.
Defining fixed and random effects has proven elusive, with competing definitions arguably leading toward a
linguistic quagmire.[8]

Assumptions of ANOVA
The analysis of variance has been studied from several approaches, the most common of which uses a linear model
that relates the response to the treatments and blocks. Note that the model is linear in parameters but may be
nonlinear across factor levels. Interpretation is easy when data is balanced across factors but much deeper
understanding is needed for unbalanced data.

Textbook analysis using a normal distribution
The analysis of variance can be presented in terms of a linear model, which makes the following assumptions about
the probability distribution of the responses:[9][10]

• Independence of observations – this is an assumption of the model that simplifies the statistical analysis.
• Normality – the distributions of the residuals are normal.
• Equality (or "homogeneity") of variances, called homoscedasticity — the variance of data in groups should be the

same.
The separate assumptions of the textbook model imply that the errors are independently, identically, and normally
distributed for fixed effects models, that is, that the errors ( 's) are independent and
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Randomization-based analysis
In a randomized controlled experiment, the treatments are randomly assigned to experimental units, following the
experimental protocol. This randomization is objective and declared before the experiment is carried out. The
objective random-assignment is used to test the significance of the null hypothesis, following the ideas of C. S.
Peirce and Ronald A. Fisher. This design-based analysis was discussed and developed by Francis J. Anscombe at
Rothamsted Experimental Station and by Oscar Kempthorne at Iowa State University.[11] Kempthorne and his
students make an assumption of unit treatment additivity, which is discussed in the books of Kempthorne and David
R. Cox.[citation needed]

Unit-treatment additivity

In its simplest form, the assumption of unit-treatment additivity[12] states that the observed response from
experimental unit when receiving treatment can be written as the sum of the unit's response and the
treatment-effect , that is [13][14][15]

The assumption of unit-treatment additivity implies that, for every treatment , the th treatment have exactly the
same effect on every experiment unit.
The assumption of unit treatment additivity usually cannot be directly falsified, according to Cox and Kempthorne.
However, many consequences of treatment-unit additivity can be falsified. For a randomized experiment, the
assumption of unit-treatment additivity implies that the variance is constant for all treatments. Therefore, by
contraposition, a necessary condition for unit-treatment additivity is that the variance is constant.
The use of unit treatment additivity and randomization is similar to the design-based inference that is standard in
finite-population survey sampling.

Derived linear model

Kempthorne uses the randomization-distribution and the assumption of unit treatment additivity to produce a derived
linear model, very similar to the textbook model discussed previously.[16] The test statistics of this derived linear
model are closely approximated by the test statistics of an appropriate normal linear model, according to
approximation theorems and simulation studies.[17] However, there are differences. For example, the
randomization-based analysis results in a small but (strictly) negative correlation between the observations.[18][19] In
the randomization-based analysis, there is no assumption of a normal distribution and certainly no assumption of
independence. On the contrary, the observations are dependent!
The randomization-based analysis has the disadvantage that its exposition involves tedious algebra and extensive
time. Since the randomization-based analysis is complicated and is closely approximated by the approach using a
normal linear model, most teachers emphasize the normal linear model approach. Few statisticians object to
model-based analysis of balanced randomized experiments.

Statistical models for observational data

However, when applied to data from non-randomized experiments or observational studies, model-based analysis
lacks the warrant of randomization.[20] For observational data, the derivation of confidence intervals must use
subjective models, as emphasized by Ronald A. Fisher and his followers. In practice, the estimates of
treatment-effects from observational studies generally are often inconsistent. In practice, "statistical models" and
observational data are useful for suggesting hypotheses that should be treated very cautiously by the public.[21]
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Summary of assumptions
The normal-model based ANOVA analysis assumes the independence, normality and homogeneity of the variances
of the residuals. The randomization-based analysis assumes only the homogeneity of the variances of the residuals
(as a consequence of unit-treatment additivity) and uses the randomization procedure of the experiment. Both these
analyses require homoscedasticity, as an assumption for the normal-model analysis and as a consequence of
randomization and additivity for the randomization-based analysis.
However, studies of processes that change variances rather than means (called dispersion effects) have been
successfully conducted using ANOVA.[22] There are no necessary assumptions for ANOVA in its full generality, but
the F-test used for ANOVA hypothesis testing has assumptions and practical limitations which are of continuing
interest.
Problems which do not satisfy the assumptions of ANOVA can often be transformed to satisfy the assumptions. The
property of unit-treatment additivity is not invariant under a "change of scale", so statisticians often use
transformations to achieve unit-treatment additivity. If the response variable is expected to follow a parametric
family of probability distributions, then the statistician may specify (in the protocol for the experiment or
observational study) that the responses be transformed to stabilize the variance.[23] Also, a statistician may specify
that logarithmic transforms be applied to the responses, which are believed to follow a multiplicative model.[24]

According to Cauchy's functional equation theorem, the logarithm is the only continuous transformation that
transforms real multiplication to addition[citation needed].

Characteristics of ANOVA
ANOVA is used in the analysis of comparative experiments, those in which only the difference in outcomes is of
interest. The statistical significance of the experiment is determined by a ratio of two variances. This ratio is
independent of several possible alterations to the experimental observations: Adding a constant to all observations
does not alter significance. Multiplying all observations by a constant does not alter significance. So ANOVA
statistical significance results are independent of constant bias and scaling errors as well as the units used in
expressing observations. In the era of mechanical calculation it was common to subtract a constant from all
observations (when equivalent to dropping leading digits) to simplify data entry.[25][26] This is an example of data
coding.

Logic of ANOVA
The calculations of ANOVA can be characterized as computing a number of means and variances, dividing two
variances and comparing the ratio to a handbook value to determine statistical significance. Calculating a treatment
effect is then trivial, "the effect of any treatment is estimated by taking the difference between the mean of the
observations which receive the treatment and the general mean."[27]

Partitioning of the sum of squares
ANOVA uses traditional standardized terminology. The definitional equation of sample variance is

, where the divisor is called the degrees of freedom (DF), the summation is called the sum

of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample
mean. ANOVA estimates 3 sample variances: a total variance based on all the observation deviations from the grand
mean, an error variance based on all the observation deviations from their appropriate treatment means and a
treatment variance. The treatment variance is based on the deviations of treatment means from the grand mean, the
result being multiplied by the number of observations in each treatment to account for the difference between the
variance of observations and the variance of means.

https://en.wikipedia.org/w/index.php?title=Functional_equation
https://en.wikipedia.org/w/index.php?title=Logarithm
https://en.wikipedia.org/wiki/Citation_needed
https://en.wikipedia.org/w/index.php?title=Coding_%28social_sciences%29


Analysis of variance 180

The fundamental technique is a partitioning of the total sum of squares SS into components related to the effects used
in the model. For example, the model for a simplified ANOVA with one type of treatment at different levels.

The number of degrees of freedom DF can be partitioned in a similar way: one of these components (that for error)
specifies a chi-squared distribution which describes the associated sum of squares, while the same is true for
"treatments" if there is no treatment effect.

See also Lack-of-fit sum of squares.

The F-test
The F-test is used for comparing the factors of the total deviation. For example, in one-way, or single-factor
ANOVA, statistical significance is tested for by comparing the F test statistic

where MS is mean square, = number of treatments and = total number of cases
to the F-distribution with , degrees of freedom. Using the F-distribution is a natural candidate
because the test statistic is the ratio of two scaled sums of squares each of which follows a scaled chi-squared
distribution.
The expected value of F is (where n is the treatment sample size) which is 1 for no
treatment effect. As values of F increase above 1 the evidence is increasingly inconsistent with the null hypothesis.
Two apparent experimental methods of increasing F are increasing the sample size and reducing the error variance
by tight experimental controls.
The textbook method of concluding the hypothesis test is to compare the observed value of F with the critical value
of F determined from tables. The critical value of F is a function of the numerator degrees of freedom, the
denominator degrees of freedom and the significance level (α). If F ≥ FCritical (Numerator DF, Denominator DF, α)
then reject the null hypothesis.
The computer method calculates the probability (p-value) of a value of F greater than or equal to the observed value.
The null hypothesis is rejected if this probability is less than or equal to the significance level (α). The two methods
produce the same result.
The ANOVA F-test is known to be nearly optimal in the sense of minimizing false negative errors for a fixed rate of
false positive errors (maximizing power for a fixed significance level). To test the hypothesis that all treatments have
exactly the same effect, the F-test's p-values closely approximate the permutation test's p-values: The approximation
is particularly close when the design is balanced.[28] Such permutation tests characterize tests with maximum power
against all alternative hypotheses, as observed by Rosenbaum.[29] The ANOVA F–test (of the null-hypothesis that all
treatments have exactly the same effect) is recommended as a practical test, because of its robustness against many
alternative distributions.[30][31]
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Extended logic
ANOVA consists of separable parts; partitioning sources of variance and hypothesis testing can be used individually.
ANOVA is used to support other statistical tools. Regression is first used to fit more complex models to data, then
ANOVA is used to compare models with the objective of selecting simple(r) models that adequately describe the
data. "Such models could be fit without any reference to ANOVA, but ANOVA tools could then be used to make
some sense of the fitted models, and to test hypotheses about batches of coefficients."[32] "[W]e think of the analysis
of variance as a way of understanding and structuring multilevel models—not as an alternative to regression but as a
tool for summarizing complex high-dimensional inferences ..."

ANOVA for a single factor
The simplest experiment suitable for ANOVA analysis is the completely randomized experiment with a single
factor. More complex experiments with a single factor involve constraints on randomization and include completely
randomized blocks and Latin squares (and variants: Graeco-Latin squares, etc.). The more complex experiments
share many of the complexities of multiple factors. A relatively complete discussion of the analysis (models, data
summaries, ANOVA table) of the completely randomized experiment is available.

ANOVA for multiple factors
ANOVA generalizes to the study of the effects of multiple factors. When the experiment includes observations at all
combinations of levels of each factor, it is termed factorial. Factorial experiments are more efficient than a series of
single factor experiments and the efficiency grows as the number of factors increases.[33] Consequently, factorial
designs are heavily used.
The use of ANOVA to study the effects of multiple factors has a complication. In a 3-way ANOVA with factors x, y
and z, the ANOVA model includes terms for the main effects (x, y, z) and terms for interactions (xy, xz, yz, xyz). All
terms require hypothesis tests. The proliferation of interaction terms increases the risk that some hypothesis test will
produce a false positive by chance. Fortunately, experience says that high order interactions are rare.[34] The ability
to detect interactions is a major advantage of multiple factor ANOVA. Testing one factor at a time hides interactions,
but produces apparently inconsistent experimental results.
Caution is advised when encountering interactions; Test interaction terms first and expand the analysis beyond
ANOVA if interactions are found. Texts vary in their recommendations regarding the continuation of the ANOVA
procedure after encountering an interaction. Interactions complicate the interpretation of experimental data. Neither
the calculations of significance nor the estimated treatment effects can be taken at face value. "A significant
interaction will often mask the significance of main effects."[35] Graphical methods are recommended to enhance
understanding. Regression is often useful. A lengthy discussion of interactions is available in Cox (1958).[36] Some
interactions can be removed (by transformations) while others cannot.
A variety of techniques are used with multiple factor ANOVA to reduce expense. One technique used in factorial
designs is to minimize replication (possibly no replication with support of analytical trickery) and to combine groups
when effects are found to be statistically (or practically) insignificant. An experiment with many insignificant factors
may collapse into one with a few factors supported by many replications.[37]
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Worked numeric examples
Several fully worked numerical examples are available. A simple case uses one-way (a single factor) analysis. A
more complex case uses two-way (two-factor) analysis.

Associated analysis
Some analysis is required in support of the design of the experiment while other analysis is performed after changes
in the factors are formally found to produce statistically significant changes in the responses. Because
experimentation is iterative, the results of one experiment alter plans for following experiments.

Preparatory analysis

The number of experimental units

In the design of an experiment, the number of experimental units is planned to satisfy the goals of the experiment.
Experimentation is often sequential.
Early experiments are often designed to provide mean-unbiased estimates of treatment effects and of experimental
error. Later experiments are often designed to test a hypothesis that a treatment effect has an important magnitude; in
this case, the number of experimental units is chosen so that the experiment is within budget and has adequate
power, among other goals.
Reporting sample size analysis is generally required in psychology. "Provide information on sample size and the
process that led to sample size decisions."[38] The analysis, which is written in the experimental protocol before the
experiment is conducted, is examined in grant applications and administrative review boards.
Besides the power analysis, there are less formal methods for selecting the number of experimental units. These
include graphical methods based on limiting the probability of false negative errors, graphical methods based on an
expected variation increase (above the residuals) and methods based on achieving a desired confident interval.[39]

Power analysis

Power analysis is often applied in the context of ANOVA in order to assess the probability of successfully rejecting
the null hypothesis if we assume a certain ANOVA design, effect size in the population, sample size and significance
level. Power analysis can assist in study design by determining what sample size would be required in order to have
a reasonable chance of rejecting the null hypothesis when the alternative hypothesis is true.[40][41][42][43]

Effect size

Several standardized measures of effect have been proposed for ANOVA to summarize the strength of the
association between a predictor(s) and the dependent variable (e.g., η2, ω2, or ƒ2) or the overall standardized
difference (Ψ) of the complete model. Standardized effect-size estimates facilitate comparison of findings across
studies and disciplines. However, while standardized effect sizes are commonly used in much of the professional
literature, a non-standardized measure of effect size that has immediately "meaningful" units may be preferable for
reporting purposes.[44]
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Followup analysis
It is always appropriate to carefully consider outliers. They have a disproportionate impact on statistical conclusions
and are often the result of errors.

Model confirmation

It is prudent to verify that the assumptions of ANOVA have been met. Residuals are examined or analyzed to
confirm homoscedasticity and gross normality.[45] Residuals should have the appearance of (zero mean normal
distribution) noise when plotted as a function of anything including time and modeled data values. Trends hint at
interactions among factors or among observations. One rule of thumb: "If the largest standard deviation is less than
twice the smallest standard deviation, we can use methods based on the assumption of equal standard deviations and
our results will still be approximately correct."[46]

Follow-up tests

A statistically significant effect in ANOVA is often followed up with one or more different follow-up tests. This can
be done in order to assess which groups are different from which other groups or to test various other focused
hypotheses. Follow-up tests are often distinguished in terms of whether they are planned (a priori) or post hoc.
Planned tests are determined before looking at the data and post hoc tests are performed after looking at the data.
Often one of the "treatments" is none, so the treatment group can act as a control. Dunnett's test (a modification of
the t-test) tests whether each of the other treatment groups has the same mean as the control.[47]

Post hoc tests such as Tukey's range test most commonly compare every group mean with every other group mean
and typically incorporate some method of controlling for Type I errors. Comparisons, which are most commonly
planned, can be either simple or compound. Simple comparisons compare one group mean with one other group
mean. Compound comparisons typically compare two sets of groups means where one set has two or more groups
(e.g., compare average group means of group A, B and C with group D). Comparisons can also look at tests of trend,
such as linear and quadratic relationships, when the independent variable involves ordered levels.
Following ANOVA with pair-wise multiple-comparison tests has been criticized on several grounds.[48] There are
many such tests (10 in one table) and recommendations regarding their use are vague or conflicting.[49][50]

Study designs and ANOVAs
There are several types of ANOVA. Many statisticians base ANOVA on the design of the experiment,[51] especially
on the protocol that specifies the random assignment of treatments to subjects; the protocol's description of the
assignment mechanism should include a specification of the structure of the treatments and of any blocking. It is also
common to apply ANOVA to observational data using an appropriate statistical model.[citation needed]

Some popular designs use the following types of ANOVA:
• One-way ANOVA is used to test for differences among two or more independent groups (means),e.g. different

levels of urea application in a crop. Typically, however, the one-way ANOVA is used to test for differences
among at least three groups, since the two-group case can be covered by a t-test. When there are only two means
to compare, the t-test and the ANOVA F-test are equivalent; the relation between ANOVA and t is given by
F = t2.

• Factorial ANOVA is used when the experimenter wants to study the interaction effects among the treatments.
• Repeated measures ANOVA is used when the same subjects are used for each treatment (e.g., in a longitudinal

study).
• Multivariate analysis of variance (MANOVA) is used when there is more than one response variable.
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ANOVA cautions
Balanced experiments (those with an equal sample size for each treatment) are relatively easy to interpret;
Unbalanced experiments offer more complexity. For single factor (one way) ANOVA, the adjustment for
unbalanced data is easy, but the unbalanced analysis lacks both robustness and power.[52] For more complex designs
the lack of balance leads to further complications. "The orthogonality property of main effects and interactions
present in balanced data does not carry over to the unbalanced case. This means that the usual analysis of variance
techniques do not apply. Consequently, the analysis of unbalanced factorials is much more difficult than that for
balanced designs."[53] In the general case, "The analysis of variance can also be applied to unbalanced data, but then
the sums of squares, mean squares, and F-ratios will depend on the order in which the sources of variation are
considered." The simplest techniques for handling unbalanced data restore balance by either throwing out data or by
synthesizing missing data. More complex techniques use regression.
ANOVA is (in part) a significance test. The American Psychological Association holds the view that simply
reporting significance is insufficient and that reporting confidence bounds is preferred.
While ANOVA is conservative (in maintaining a significance level) against multiple comparisons in one dimension,
it is not conservative against comparisons in multiple dimensions.[54]

Generalizations
ANOVA is considered to be a special case of linear regression[55][56] which in turn is a special case of the general
linear model.[57] All consider the observations to be the sum of a model (fit) and a residual (error) to be minimized.
The Kruskal–Wallis test and the Friedman test are nonparametric tests, which do not rely on an assumption of
normality.[58][59]

History
While the analysis of variance reached fruition in the 20th century, antecedents extend centuries into the past
according to Stigler.[60] These include hypothesis testing, the partitioning of sums of squares, experimental
techniques and the additive model. Laplace was performing hypothesis testing in the 1770s.[61] The development of
least-squares methods by Laplace and Gauss circa 1800 provided an improved method of combining observations
(over the existing practices of astronomy and geodesy). It also initiated much study of the contributions to sums of
squares. Laplace soon knew how to estimate a variance from a residual (rather than a total) sum of squares.[62] By
1827 Laplace was using least squares methods to address ANOVA problems regarding measurements of
atmospheric tides.[63] Before 1800 astronomers had isolated observational errors resulting from reaction times (the
"personal equation") and had developed methods of reducing the errors.[64] The experimental methods used in the
study of the personal equation were later accepted by the emerging field of psychology [65] which developed strong
(full factorial) experimental methods to which randomization and blinding were soon added.[66] An eloquent
non-mathematical explanation of the additive effects model was available in 1885.[67]

Sir Ronald Fisher introduced the term "variance" and proposed a formal analysis of variance in a 1918 article The
Correlation Between Relatives on the Supposition of Mendelian Inheritance.[68] His first application of the analysis
of variance was published in 1921.[69] Analysis of variance became widely known after being included in Fisher's
1925 book Statistical Methods for Research Workers.
Randomization models were developed by several researchers. The first was published in Polish by Neyman in
1923.[70]

One of the attributes of ANOVA which ensured its early popularity was computational elegance. The structure of the
additive model allows solution for the additive coefficients by simple algebra rather than by matrix calculations. In
the era of mechanical calculators this simplicity was critical. The determination of statistical significance also
required access to tables of the F function which were supplied by early statistics texts.
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Footnotes
[1][1] Gelman (2005, p 2)
[2][2] Howell (2002, p 320)
[3][3] Montgomery (2001, p 63)
[4][4] Gelman (2005, p 1)
[5][5] Gelman (2005, p 5)
[6][6] Randomization is a term used in multiple ways in this material. "Randomization has three roles in applications: as a device for eliminating

biases, for example from unobserved explanatory variables and selection effects: as a basis for estimating standard errors: and as a foundation
for formally exact significance tests." Cox (2006, page 192) Hinkelmann and Kempthorne use randomization both in experimental design and
for statistical analysis.

[7][7] Montgomery (2001, Chapter 12: Experiments with random factors)
[8] Gelman (2005, pp 20–21)
[9] Cochran & Cox (1992, p 48)
[10][10] Howell (2002, p 323)
[11][11] Anscombe (1948)
[12][12] Unit-treatment additivity is simply termed additivity in most texts. Hinkelmann and Kempthorne add adjectives and distinguish between

additivity in the strict and broad senses. This allows a detailed consideration of multiple error sources (treatment, state, selection, measurement
and sampling) on page 161.

[13][13] Kempthorne (1979, p 30)
[14][14] Cox (1958, Chapter 2: Some Key Assumptions)
[15][15] Hinkelmann and Kempthorne (2008, Volume 1, Throughout. Introduced in Section 2.3.3: Principles of experimental design; The linear

model; Outline of a model)
[16][16] Hinkelmann and Kempthorne (2008, Volume 1, Section 6.3: Completely Randomized Design; Derived Linear Model)
[17][17] Hinkelmann and Kempthorne (2008, Volume 1, Section 6.6: Completely randomized design; Approximating the randomization test)
[18] Bailey (2008, Chapter 2.14 "A More General Model" in Bailey, pp. 38–40)
[19][19] Hinkelmann and Kempthorne (2008, Volume 1, Chapter 7: Comparison of Treatments)
[20] Kempthorne (1979, pp 125–126, "The experimenter must decide which of the various causes that he feels will produce variations in his

results must be controlled experimentally. Those causes that he does not control experimentally, because he is not cognizant of them, he must
control by the device of randomization." "[O]nly when the treatments in the experiment are applied by the experimenter using the full
randomization procedure is the chain of inductive inference sound. It is only under these circumstances that the experimenter can attribute
whatever effects he observes to the treatment and the treatment only. Under these circumstances his conclusions are reliable in the statistical
sense.")

[21][21] Freedman
[22][22] Montgomery (2001, Section 3.8: Discovering dispersion effects)
[23][23] Hinkelmann and Kempthorne (2008, Volume 1, Section 6.10: Completely randomized design; Transformations)
[24][24] Bailey (2008)
[25][25] Montgomery (2001, Section 3-3: Experiments with a single factor: The analysis of variance; Analysis of the fixed effects model)
[26] Cochran & Cox (1992, p 2 example)
[27] Cochran & Cox (1992, p 49)
[28][28] Hinkelmann and Kempthorne (2008, Volume 1, Section 6.7: Completely randomized design; CRD with unequal numbers of replications)
[29] Rosenbaum (2002, page 40) cites Section 5.7 (Permutation Tests), Theorem 2.3 (actually Theorem 3, page 184) of Lehmann's Testing

Statistical Hypotheses (1959).
[30][30] Moore and McCabe (2003, page 763)
[31] The F-test for the comparison of variances has a mixed reputation. It is not recommended as a hypothesis test to determine whether two

different samples have the same variance. It is recommended for ANOVA where two estimates of the variance of the same sample are
compared. While the F-test is not generally robust against departures from normality, it has been found to be robust in the special case of
ANOVA. Citations from Moore & McCabe (2003): "Analysis of variance uses F statistics, but these are not the same as the F statistic for
comparing two population standard deviations." (page 554) "The F test and other procedures for inference about variances are so lacking in
robustness as to be of little use in practice." (page 556) "[The ANOVA F test] is relatively insensitive to moderate nonnormality and unequal
variances, especially when the sample sizes are similar." (page 763) ANOVA assumes homoscedasticity, but it is robust. The statistical test for
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Principal component analysis

PCA of a multivariate Gaussian distribution
centered at (1,3) with a standard deviation of 3 in
roughly the (0.878, 0.478) direction and of 1 in
the orthogonal direction. The vectors shown are
the eigenvectors of the covariance matrix scaled

by the square root of the corresponding
eigenvalue, and shifted so their tails are at the

mean.

Principal component analysis (PCA) is a statistical procedure that
uses orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. The number of
principal components is less than or equal to the number of original
variables. This transformation is defined in such a way that the first
principal component has the largest possible variance (that is, accounts
for as much of the variability in the data as possible), and each
succeeding component in turn has the highest variance possible under
the constraint that it be orthogonal to (i.e., uncorrelated with) the
preceding components. Principal components are guaranteed to be
independent if the data set is jointly normally distributed. PCA is
sensitive to the relative scaling of the original variables.

Depending on the field of application, it is also named the discrete
Karhunen–Loève transform (KLT) in signal processing, the Hotelling
transform in multivariate quality control, proper orthogonal
decomposition (POD) in mechanical engineering, singular value
decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue
decomposition (EVD) of XTX in linear algebra, factor analysis, Eckart–Young theorem (Harman, 1960), or
Schmidt–Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science,
empirical eigenfunction decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956),
quasiharmonic modes (Brooks et al., 1988), spectral decomposition in noise and vibration, and empirical modal
analysis in structural dynamics.

PCA was invented in 1901 by Karl Pearson, as an analogue of the principal axes theorem in mechanics; it was later
independently developed (and named) by Harold Hotelling in the 1930s.[1] The method is mostly used as a tool in
exploratory data analysis and for making predictive models. PCA can be done by eigenvalue decomposition of a data
covariance (or correlation) matrix or singular value decomposition of a data matrix, usually after mean centering
(and normalizing or using Z-scores) the data matrix for each attribute. The results of a PCA are usually discussed in
terms of component scores, sometimes called factor scores (the transformed variable values corresponding to a
particular data point), and loadings (the weight by which each standardized original variable should be multiplied to
get the component score).[2]

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be thought of as
revealing the internal structure of the data in a way that best explains the variance in the data. If a multivariate
dataset is visualised as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA can supply
the user with a lower-dimensional picture, a projection or "shadow" of this object when viewed from its (in some
sense; see below) most informative viewpoint. This is done by using only the first few principal components so that
the dimensionality of the transformed data is reduced.
PCA is closely related to factor analysis. Factor analysis typically incorporates more domain specific assumptions
about the underlying structure and solves eigenvectors of a slightly different matrix.
PCA is also related to canonical correlation analysis (CCA). CCA defines coordinate systems that optimally describe
the cross-covariance between two datasets while PCA defines a new orthogonal coordinate system that optimally
describes variance in a single dataset.
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Details
PCA is mathematically defined[3] as an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the
first principal component), the second greatest variance on the second coordinate, and so on.
Consider a data matrix, X, with zero empirical mean (the empirical (sample) mean of the distribution has been
subtracted from the data set), where each of the n rows represents a different repetition of the experiment, and each
of the p columns gives a particular kind of datum (say, the results from a particular sensor).
Mathematically, the transformation is defined by a set of p-dimensional vectors of weights or loadings

that map each row vector of X to a new vector of principal component scores

, given by

in such a way that the individual variables of t considered over the data set successively inherit the maximum
possible variance from x, with each loading vector w constrained to be a unit vector.

First component
The first loading vector w(1) thus has to satisfy

Equivalently, writing this in matrix form gives

Since w(1) has been defined to be a unit vector, it equivalently also satisfies

The quantity to be maximised can be recognised as a Rayleigh quotient. A standard result for a symmetric matrix
such as XTX is that the quotient's maximum possible value is the largest eigenvalue of the matrix, which occurs
when w is the corresponding eigenvector.
With w(1) found, the first component of a data vector x(i) can then be given as a score t1(i) = x(i) ⋅ w(1) in the
transformed co-ordinates, or as the corresponding vector in the original variables, {x(i) ⋅ w(1)} w(1).

Further components
The kth component can be found by subtracting the first k − 1 principal components from X:

and then finding the loading vector which extracts the maximum variance from this new data matrix

It turns out that this gives the remaining eigenvectors of XTX, with the maximum values for the quantity in brackets
given by their corresponding eigenvalues.
The kth principal component of a data vector x(i) can therefore be given as a score tk(i) = x(i) ⋅ w(k) in the transformed
co-ordinates, or as the corresponding vector in the space of the original variables, {x(i) ⋅ w(k)} w(k), where w(k) is the
kth eigenvector of XTX.
The full principal components decomposition of X can therefore be given as
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where W is a p-by-p matrix whose columns are the eigenvectors of XTX

Covariances
XTX itself can be recognised as proportional to the empirical sample covariance matrix of the dataset X.
The sample covariance Q between two of the different principal components over the dataset is given by

where the eigenvector property of w(k) has been used to move from line 2 to line 3. However eigenvectors w(j) and
w(k) corresponding to eigenvalues of a symmetric matrix are orthogonal (if the eigenvalues are different), or can be
orthogonalised (if the vectors happen to share an equal repeated value). The product in the final line is therefore zero;
there is no sample covariance between different principal components over the dataset.
Another way to characterise the principal components transformation is therefore as the transformation to
coordinates which diagonalise the empirical sample covariance matrix.
In matrix form, the empirical covariance matrix for the original variables can be written

The empirical covariance matrix between the principal components becomes

where Λ is the diagonal matrix of eigenvalues λ(k) of XTX

(λ(k) being equal to the sum of the squares over the dataset associated with each component k: λ(k) = Σi tk
2
(i) = Σi (x(i)

⋅ w(k))
2)

Dimensionality reduction
The faithful transformation T = X W maps a data vector x(i) from an original space of p variables to a new space of p
variables which are uncorrelated over the dataset. However, not all the principal components need to be kept.
Keeping only the first L principal components, produced by using only the first L loading vectors, gives the truncated
transformation

where the matrix TL now has n rows but only L columns. By construction, of all the transformed data matrices with
only L columns, this score matrix maximises the variance in the original data that has been preserved, while
minimising the total squared reconstruction error ||T − TL||2.

https://en.wikipedia.org/w/index.php?title=Covariance_matrix
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A principal components analysis scatterplot of
Y-STR haplotypes calculated from repeat-count

values for 37 Y-chromosomal STR markers from
354 individuals.

PCA has successfully found linear combinations
of the different markers, that separate out

different clusters corresponding to different lines
of individuals' Y-chromosomal genetic descent.

Such dimensionality reduction can be a very useful step for visualising
and processing high-dimensional datasets, while still retaining as much
of the variance in the dataset as possible. For example, selecting L = 2
and keeping only the first two principal components finds the
two-dimensional plane through the high-dimensional dataset in which
the data is most spread out, so if the data contains clusters these too
may be most spread out, and therefore most visible to be plotted out in
a two-dimensional diagram; whereas if two directions through the data
(or two of the original variables) are chosen at random, the clusters
may be much less spread apart from each other, and may in fact be
much more likely to substantially overlay each other, making them
indistinguishable.

Similarly, in regression analysis, the larger the number of explanatory
variables allowed, the greater is the chance of overfitting the model,
producing conclusions that fail to generalise to other datasets. One
approach, especially when there are strong correlations between
different possible explanatory variables, is to reduce them to a few
principal components and then run the regression against them, a method called principal component regression.

Dimensionality reduction may also be appropriate when the variables in a dataset are noisy. If each column of the
dataset contains independent identically distributed Gaussian noise, then the columns of T will also contain similarly
identically distributed Gaussian noise (such a distribution is invariant under the effects of the matrix W, which can
be thought of as a high-dimensional rotation of the co-ordinate axes). However, with more of the total variance
concentrated in the first few principal components compared to the same noise variance, the proportionate effect of
the noise is less—the first components achieve a higher signal-to-noise ratio. PCA thus can have the effect of
concentrating much of the signal into the first few principal components, which can usefully be captured by
dimensionality reduction; while the later principal components may be dominated by noise, and so disposed of
without great loss.

Singular value decomposition
The principal components transformation can also be associated with another matrix factorisation, the singular value
decomposition (SVD) of X,

Here Σ is a n-by-p rectangular diagonal matrix of positive numbers σ(k), called the singular values of X; U is an
n-by-n matrix, the columns of which are orthogonal unit vectors of length n called the left singular vectors of X; and
W is a p-by-p whose columns are orthogonal unit vectors of length p and called the right singular vectors of X.
In terms of this factorisation, the matrix XTX can be written

Comparison with the eigenvector factorisation of XTX establishes that the right singular vectors W of X are
equivalent to the eigenvectors of XTX, while the singular values σ(k) of X are equal to the square roots of the
eigenvalues λ(k) of XTX.
Using the singular value decomposition the score matrix T can be written
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so each column of T is given by one of the left singular vectors of X multiplied by the corresponding singular value.
Efficient algorithms exist to calculate the SVD of X without having to form the matrix XTX, so computing the SVD
is now the standard way to calculate a principal components analysis from a data matrix, unless only a handful of
components are required.
As with the eigendecomposition, a truncated n-by-L score matrix TL can be obtained by considering only the first L
largest singular values and their singular vectors:

The truncation of a matrix M or T using a truncated singular value decomposition in this way produces a truncated
matrix that is the nearest possible matrix of rank L to the original matrix, in the sense of the difference between the
two having the smallest possible Frobenius norm, a result known as the Eckart–Young theorem [1936].

Further considerations
Given a set of points in Euclidean space, the first principal component corresponds to a line that passes through the
multidimensional mean and minimizes the sum of squares of the distances of the points from the line. The second
principal component corresponds to the same concept after all correlation with the first principal component has
been subtracted from the points. The singular values (in Σ) are the square roots of the eigenvalues of the matrix XTX.
Each eigenvalue is proportional to the portion of the "variance" (more correctly of the sum of the squared distances
of the points from their multidimensional mean) that is correlated with each eigenvector. The sum of all the
eigenvalues is equal to the sum of the squared distances of the points from their multidimensional mean. PCA
essentially rotates the set of points around their mean in order to align with the principal components. This moves as
much of the variance as possible (using an orthogonal transformation) into the first few dimensions. The values in
the remaining dimensions, therefore, tend to be small and may be dropped with minimal loss of information (see
below). PCA is often used in this manner for dimensionality reduction. PCA has the distinction of being the optimal
orthogonal transformation for keeping the subspace that has largest "variance" (as defined above). This advantage,
however, comes at the price of greater computational requirements if compared, for example and when applicable, to
the discrete cosine transform, and in particular to the DCT-II which is simply known as the "DCT". Nonlinear
dimensionality reduction techniques tend to be more computationally demanding than PCA.
PCA is sensitive to the scaling of the variables. If we have just two variables and they have the same sample variance
and are positively correlated, then the PCA will entail a rotation by 45° and the "loadings" for the two variables with
respect to the principal component will be equal. But if we multiply all values of the first variable by 100, then the
principal component will be almost the same as that variable, with a small contribution from the other variable,
whereas the second component will be almost aligned with the second original variable. This means that whenever
the different variables have different units (like temperature and mass), PCA is a somewhat arbitrary method of
analysis. (Different results would be obtained if one used Fahrenheit rather than Celsius for example.) Note that
Pearson's original paper was entitled "On Lines and Planes of Closest Fit to Systems of Points in Space" – "in space"
implies physical Euclidean space where such concerns do not arise. One way of making the PCA less arbitrary is to
use variables scaled so as to have unit variance, by standardizing the data and hence use the autocorrelation matrix
instead of the autocovariance matrix as a basis for PCA. However, this compresses the fluctuations in all dimensions
of the signal space to unit variance.
Mean subtraction (a.k.a. "mean centering") is necessary for performing PCA to ensure that the first principal 
component describes the direction of maximum variance. If mean subtraction is not performed, the first principal 
component might instead correspond more or less to the mean of the data. A mean of zero is needed for finding a
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basis that minimizes the mean square error of the approximation of the data.[4]

PCA is equivalent to empirical orthogonal functions (EOF), a name which is used in meteorology.
An autoencoder neural network with a linear hidden layer is similar to PCA. Upon convergence, the weight vectors
of the K neurons in the hidden layer will form a basis for the space spanned by the first K principal components.
Unlike PCA, this technique will not necessarily produce orthogonal vectors.
PCA is a popular primary technique in pattern recognition. It is not, however, optimized for class separability. An
alternative is the linear discriminant analysis, which does take this into account.
Another application of PCA is reducing the number of parameters in the process of generating computational models
of oil reservoirs.[5]

Table of symbols and abbreviations

Symbol Meaning Dimensions Indices

data matrix, consisting of the set of all data vectors, one vector per row

the number of row vectors in the data set scalar

the number of elements in each row vector (dimension) scalar

the number of dimensions in the dimensionally reduced subspace, scalar

vector of empirical means, one mean for each column j of the data matrix

vector of empirical standard deviations, one standard deviation for each column j of the data
matrix

vector of all 1's

deviations from the mean of each column j of the data matrix

z-scores, computed using the mean and standard deviation for each row m of the data matrix

covariance matrix

correlation matrix

matrix consisting of the set of all eigenvectors of C, one eigenvector per column

diagonal matrix consisting of the set of all eigenvalues of C along its principal diagonal, and 0
for all other elements

matrix of basis vectors, one vector per column, where each basis vector is one of the
eigenvectors of C, and where the vectors in W are a sub-set of those in V

matrix consisting of n row vectors, where each vector is the projection of the corresponding
data vector from matrix X onto the basis vectors contained in the columns of matrix W.
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Properties and limitations of PCA

Properties [6]

Property 1: For any integer q, 1 ≤ q ≤ p, consider the orthogonal linear transformation

where is a q-element vector and is a (q × p) matrix, and let be the variance-covariance matrix
for . Then the trace of , denoted , is maximized by taking , where consists of the
first columns of  is the transposition of .
Property 2: Consider again the orthonormal transformation

with   and defined as before. Then is minimized by taking  where consists
of the last columns of .
The statistical implication of this property is that the last few PCs are not simply unstructured left-overs after
removing the important PCs. Because these last PCs have variances as small as possible they are useful in their own
right. They can help to detect unsuspected near-constant linear relationships between the elements of , and they
may also be useful in regression, in selecting a subset of variables from , and in outlier detection.

Property 3: the Spectral Decomposition of 

Before we look at its usage, we first look at diagonal elements,

Then, perhaps the main statistical implication of the result is that not only can we decompose the combined variances
of all the elements of into decreasing contributions due to each PC, but we can also decompose the whole
covariance matrix into contributions from each PC. Although not strictly decreasing, the elements of

will tend to become smaller as increases, as decreases for increasing , whereas the
elements of tend to stay 'about the same size'because of the normalization constraints: 

Limitations
As noted above, the results of PCA depend on the scaling of the variables.
The applicability of PCA is limited by certain assumptions[7] made in its derivation.

PCA and information theory
The claim that the PCA used for dimensionality reduction preserves most of the information of the data is
misleading. Indeed, without any assumption on the signal model, PCA cannot help to reduce the amount of
information lost during dimensionality reduction, where information was measured using Shannon entropy.
Under the assumption that

i.e., that the data vector is the sum of the desired information-bearing signal and a noise signal one can show
that PCA can be optimal for dimensionality reduction also from an information-theoretic point-of-view.
In particular, Linsker showed that if is Gaussian and is Gaussian noise with a covariance matrix proportional to
the identity matrix, the PCA maximizes the mutual information between the desired information and the
dimensionality-reduced output .
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If the noise is still Gaussian and has a covariance matrix proportional to the identity matrix (i.e., the components of
the vector are iid), but the information-bearing signal is non-Gaussian (which is a common scenario), PCA at
least minimizes an upper bound on the information loss, which is defined as[8]

The optimality of PCA is also preserved if the noise is iid and at least more Gaussian (in terms of the
Kullback–Leibler divergence) than the information-bearing signal . In general, even if the above signal model
holds, PCA loses its information-theoretic optimality as soon as the noise becomes dependent.

Computing PCA using the covariance method
The following is a detailed description of PCA using the covariance method (see also here [9]). But note that it is
better to use the singular value decomposition (using standard software)Wikipedia:Quotations.
The goal is to transform a given data set X of dimension p to an alternative data set Y of smaller dimension L.
Equivalently, we are seeking to find the matrix Y, where Y is the Karhunen–Loève transform (KLT) of matrix X:

Organize the data set
Suppose you have data comprising a set of observations of p variables, and you want to reduce the data so that each
observation can be described with only L variables, L < p. Suppose further, that the data are arranged as a set of n
data vectors with each representing a single grouped observation of the p variables.
• Write as row vectors, each of which has p columns.
• Place the row vectors into a single matrix X of dimensions n × p.

Calculate the empirical mean
• Find the empirical mean along each dimension j = 1, ..., p.
• Place the calculated mean values into an empirical mean vector u of dimensions p × 1.

Calculate the deviations from the mean
Mean subtraction is an integral part of the solution towards finding a principal component basis that minimizes the
mean square error of approximating the data.[10] Hence we proceed by centering the data as follows:
• Subtract the empirical mean vector u from each row of the data matrix X.
• Store mean-subtracted data in the n × p matrix B.

where h is an n × 1 column vector of all 1s:
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Find the covariance matrix
• Find the p × p empirical covariance matrix C from the outer product of matrix B with itself:

where
is the conjugate transpose operator. Note that if B consists entirely of real numbers, which is

the case in many applications, the "conjugate transpose" is the same as the regular transpose.
•• Please note that outer products apply to vectors. For tensor cases we should apply tensor products, but the

covariance matrix in PCA is a sum of outer products between its sample vectors; indeed, it could be represented
as B*.B. See the covariance matrix sections on the discussion page for more information.

• The reasoning behind using N-1 instead of N to calculate the covariance is Bessel's correction

Find the eigenvectors and eigenvalues of the covariance matrix
• Compute the matrix V of eigenvectors which diagonalizes the covariance matrix C:

where D is the diagonal matrix of eigenvalues of C. This step will typically involve the use of a
computer-based algorithm for computing eigenvectors and eigenvalues. These algorithms are readily available
as sub-components of most matrix algebra systems, such as R, MATLAB,[11][12] Mathematica,[13] SciPy, IDL
(Interactive Data Language), or GNU Octave as well as OpenCV.

• Matrix D will take the form of an M × M diagonal matrix, where

is the jth eigenvalue of the covariance matrix C, and

• Matrix V, also of dimension p × p, contains p column vectors, each of length p, which represent the p
eigenvectors of the covariance matrix C.

• The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector.

Rearrange the eigenvectors and eigenvalues
• Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order of decreasing eigenvalue.
•• Make sure to maintain the correct pairings between the columns in each matrix.

Compute the cumulative energy content for each eigenvector
• The eigenvalues represent the distribution of the source data's energyWikipedia:Please clarify among each of the

eigenvectors, where the eigenvectors form a basis for the data. The cumulative energy content g for the jth
eigenvector is the sum of the energy content across all of the eigenvalues from 1 through j:

[citation needed]
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Select a subset of the eigenvectors as basis vectors
• Save the first L columns of V as the p × L matrix W:

where

• Use the vector g as a guide in choosing an appropriate value for L. The goal is to choose a value of L as small as
possible while achieving a reasonably high value of g on a percentage basis. For example, you may want to
choose L so that the cumulative energy g is above a certain threshold, like 90 percent. In this case, choose the
smallest value of L such that

Convert the source data to z-scores (optional)
• Create an p × 1 empirical standard deviation vector s from the square root of each element along the main

diagonal of the diagonalized covariance matrix C. (Note, that scaling operations do not commute with the KLT
thus we must scale by the variances of the already-decorrelated vector, which is the diagonal of C) :

• Calculate the n × p z-score matrix:

(divide element-by-element)

•• Note: While this step is useful for various applications as it normalizes the data set with respect to its variance, it
is not integral part of PCA/KLT

Project the z-scores of the data onto the new basis
•• The projected vectors are the columns of the matrix

• The rows of matrix T represent the Karhunen–Loeve transforms (KLT) of the data vectors in the rows of
matrix X.

Derivation of PCA using the covariance method
Let X be a d-dimensional random vector expressed as column vector. Without loss of generality, assume X has zero
mean.

We want to find a  orthonormal transformation matrix P so that PX has a diagonal covariant matrix (i.e.

PX is a random vector with all its distinct components pairwise uncorrelated).
A quick computation assuming were unitary yields:

Hence holds if and only if were diagonalisable by .
This is very constructive, as var(X) is guaranteed to be a non-negative definite matrix and thus is guaranteed to be
diagonalisable by some unitary matrix.
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Iterative computation
In practical implementations especially with high dimensional data (large p), the covariance method is rarely used
because it is not efficient. One way to compute the first principal component efficiently[14] is shown in the following
pseudo-code, for a data matrix X with zero mean, without ever computing its covariance matrix

 a random vector of length p

do c times:

       (a vector of length p)

      for each row 

            

      

return 

This algorithm is simply an efficient way of calculating XTX r, normalizing, and placing the result back in r (power
iteration). It avoids the np2 operations of calculating the covariance matrix. r will typically get close to the first
principal component of X within a small number of iterations, c. (The magnitude of s will be larger after each
iteration. Convergence can be detected when it increases by an amount too small for the precision of the machine.)
Subsequent principal components can be computed by subtracting component r from X (see Gram–Schmidt) and
then repeating this algorithm to find the next principal component. However this simple approach is not numerically
stable if more than a small number of principal components are required, because imprecisions in the calculations
will additively affect the estimates of subsequent principal components. More advanced methods build on this basic
idea, as with the closely related Lanczos algorithm.
One way to compute the eigenvalue that corresponds with each principal component is to measure the difference in
mean-squared-distance between the rows and the centroid, before and after subtracting out the principal component.
The eigenvalue that corresponds with the component that was removed is equal to this difference.

The NIPALS method
For very high-dimensional datasets, such as those generated in the *omics sciences (e.g., genomics, metabolomics) it
is usually only necessary to compute the first few PCs. The non-linear iterative partial least squares (NIPALS)
algorithm calculates t

1 
and w

1
T from X. The outer product, t

1
w

1
T can then be subtracted from X leaving the residual

matrix E
1
. This can be then used to calculate subsequent PCs. This results in a dramatic reduction in computational

time since calculation of the covariance matrix is avoided.
However, for large data matrices, or matrices that have a high degree of column collinearity, NIPALS suffers from
loss of orthogonality due to machine precision limitations accumulated in each iteration step.[15] A Gram–Schmidt
(GS) re-orthogonalization algorithm is applied to both the scores and the loadings at each iteration step to eliminate
this loss of orthogonality.[16]
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Online/sequential estimation
In an "online" or "streaming" situation with data arriving piece by piece rather than being stored in a single batch, it
is useful to make an estimate of the PCA projection that can be updated sequentially. This can be done efficiently,
but requires different algorithms.

Relation between PCA and K-means clustering
It has been shown recently (2001,2004)[17][18] that the relaxed solution of K-means clustering, specified by the
cluster indicators, is given by the PCA principal components, and the PCA subspace spanned by the principal
directions is identical to the cluster centroid subspace specified by the between-class scatter matrix. Thus PCA
automatically projects to the subspace where the global solution of K-means clustering lies, and thus facilitates
K-means clustering to find near-optimal solutions.

Relation between PCA and Factor Analysis [19]

Principle components creates variables that are linear combinations of the original variables. The new variables have
the property that the variables are all orthogonal. The principle components can be used to find clusters in a set of
data. PCA is a variance-focused approach seeking to reproduce the total variable variance, in which components
reflect both common and unique variance of the variable. PCA is generally preferred for purposes of data reduction
(i.e., translating variable space into optimal factor space) but not when detect the latent construct or factors.
Factor analysis is similar to principle component analysis, in that factor analysis also involves linear combinations of
variables. Different from PCA, factor analysis is a correlation-focused approach seeking to reproduce the
inter-correlations among variables, in which the factors “represent the common variance of variables, excluding
unique variance[20]" . Factor analysis is generally used when the research purpose is detecting data structure (i.e.,
latent constructs or factors) or causal modeling.

Correspondence analysis
Correspondence analysis (CA) was developed by Jean-Paul Benzécri and is conceptually similar to PCA, but scales
the data (which should be non-negative) so that rows and columns are treated equivalently. It is traditionally applied
to contingency tables. CA decomposes the chi-squared statistic associated to this table into orthogonal factors.
Because CA is a descriptive technique, it can be applied to tables for which the chi-squared statistic is appropriate or
not. Several variants of CA are available including detrended correspondence analysis and canonical correspondence
analysis. One special extension is multiple correspondence analysis, which may be seen as the counterpart of
principal component analysis for categorical data.
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Generalizations

Nonlinear generalizations

Linear PCA versus nonlinear Principal Manifolds[21] for visualization of breast
cancer microarray data: a) Configuration of nodes and 2D Principal Surface in the
3D PCA linear manifold. The dataset is curved and cannot be mapped adequately
on a 2D principal plane; b) The distribution in the internal 2D non-linear principal

surface coordinates (ELMap2D) together with an estimation of the density of
points; c) The same as b), but for the linear 2D PCA manifold (PCA2D). The

"basal" breast cancer subtype is visualized more adequately with ELMap2D and
some features of the distribution become better resolved in comparison to PCA2D.
Principal manifolds are produced by the elastic maps algorithm. Data are available
for public competition.[22] Software is available for free non-commercial use.[23]

Most of the modern methods for nonlinear
dimensionality reduction find their
theoretical and algorithmic roots in PCA or
K-means. Pearson's original idea was to take
a straight line (or plane) which will be "the
best fit" to a set of data points. Principal
curves and manifolds[24] give the natural
geometric framework for PCA
generalization and extend the geometric
interpretation of PCA by explicitly
constructing an embedded manifold for data
approximation, and by encoding using
standard geometric projection onto the
manifold, as it is illustrated by Fig. See also
the elastic map algorithm and principal
geodesic analysis. Another popular
generalization is kernel PCA, which
corresponds to PCA performed in a
reproducing kernel Hilbert space associated
with a positive definite kernel.

Multilinear generalizations

In multilinear subspace learning, PCA is
generalized to multilinear PCA (MPCA)
that extracts features directly from tensor
representations. MPCA is solved by
performing PCA in each mode of the tensor
iteratively. MPCA has been applied to face
recognition, gait recognition, etc. MPCA is
further extended to uncorrelated MPCA,
non-negative MPCA and robust MPCA.

Higher order

N-way principal component analysis may be performed with models such as Tucker decomposition, PARAFAC,
multiple factor analysis, co-inertia analysis, STATIS, and DISTATIS.

Robustness – weighted PCA

While PCA finds the mathematically optimal method (as in minimizing the squared error), it is sensitive to outliers
in the data that produce large errors PCA tries to avoid. It therefore is common practice to remove outliers before

computing PCA. However, in some contexts, outliers can be difficult to identify. For example in data mining 
algorithms like correlation clustering, the assignment of points to clusters and outliers is not known beforehand. A
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recently proposed generalization of PCA based on a weighted PCA increases robustness by assigning different
weights to data objects based on their estimated relevancy.

Software/source code
• Mathematica implements principal component analysis with the PrincipalComponents command[25] using both

covariance and correlation methods.
• In the NAG Library, principal components analysis is implemented via the g03aa routine (available in both the

Fortran and the C versions of the Library).
• In the MATLAB Statistics Toolbox, the functions princomp and pca (R2012b) give the principal

components, while the function pcares gives the residuals and reconstructed matrix for a low-rank PCA
approximation. An example MATLAB implementation of PCA is available.[26]

• in GNU Octave, a free software computational environment mostly compatible with MATLAB, the function
princomp[27] gives the principal component.

• in the free statistical package R, the functions princomp[28] and prcomp[29] can be used for principal
component analysis; prcomp uses singular value decomposition which generally gives better numerical
accuracy. Recently there has been an explosion in implementations of principal component analysis in various R
packages. Some packages that implement PCA in R, include, but are not limited to: ade4, vegan,
ExPosition, and FactoMineR[30]

•• in SAS, PROC FACTOR offers principal components analysis.
• MLPACK provides an implementation of principal component analysis in C++.
• In XLMiner, the Principal Components tab can be used for principal component analysis.[citation needed]

•• In Stata, the pca command provides principal components analysis.
• Cornell Spectrum Imager – An open-source toolset built on ImageJ. Enables quick easy PCA analysis for 3D

datacubes.[31]

• imDEV – Free Excel addin to calculate principal components using R package[32][33]

• "ViSta: The Visual Statistics System" – a free software that provides principal components analysis, simple and
multiple correspondence analysis.[34]

• "Spectramap" – software to create a biplot using principal components analysis, correspondence analysis or
spectral map analysis.[35]

• FinMath – a .NET numerical library containing an implementation of PCA.[36]

• The Unscrambler is a multivariate analysis software enabling Principal Component Analysis (PCA) with PCA
Projection.[citation needed]

• OpenCV[37]

• NMath, a proprietary numerical library containing PCA for the .NET Framework.[citation needed]

• In IDL, the principal components can be calculated using the function pcomp.[38]

• Weka computes principal components.[39]

• Software for analyzing multivariate data with instant response using PCA[40]

• Orange (software) supports PCA through its Linear Projection widget.[citation needed]

• A version of PCA adapted for population genetics analysis can be found in the suite EIGENSOFT.[41]

• PCA can also be performed by the statistical software Partek Genomics Suite.[42]

• The libpca C++ library [43] offers PCA and corresponding transformations
• Origin contains PCA in its Pro version.
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Diversity index

Diversity index
A diversity index is a quantitative measure that reflects how many different types (such as species) there are in a
dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed
among those types. The value of a diversity index increases both when the number of types increases and when
evenness increases. For a given number of types, the value of a diversity index is maximized when all types are
equally abundant.
When diversity indices are used in ecology, the types of interest are usually species, but they can also be other
categories, such as genera, families, functional types or haplotypes. The entities of interest are usually individual
plants or animals, and the measure of abundance can be, for example, number of individuals, biomass or coverage. In
demography, the entities of interest can be people, and the types of interest various demographic groups. In
information science, the entities can be characters and the types the different letters of the alphabet. The most
commonly used diversity indices are simple transformations of the effective number of types (also known as 'true
diversity'), but each diversity index can also be interpreted in its own right as a measure corresponding to some real
phenomenon (but a different one for each diversity index).[1][2][3][4]

True diversity (The effective number of types)
True diversity, or the effective number of types, refers to the number of equally-abundant types needed for the
average proportional abundance of the types to equal that observed in the dataset of interest (where all types may not
be equally abundant). The true diversity in a dataset is calculated by first taking the weighted generalized mean of
the proportional abundances of the types in the dataset, and then taking the inverse of this. The equation is:

The denominator equals average proportional abundance of the types in the dataset as calculated with the weighted
generalized mean with exponent q − 1. In the equation, R is richness (the total number of types in the dataset), and
the proportional abundance of the ith type is . The proportional abundances themselves are used as the nominal
weights. When q = 1, the above equation is undefined, so the corresponding mean is calculated with the following
equation instead:

The value of q is often referred to as the order of the diversity. It defines the sensitivity of the diversity value to rare
vs. abundant species by modifying how the mean of the species proportional abundances is calculated. With some
values of the parameter q, the generalized mean with exponent q − 1 gives familiar kinds of mean as special cases. In
particular, q = 0 corresponds to the harmonic mean, q = 1 to the geometric mean and q = 2 to the arithmetic mean.
As q approaches infinity, the generalized mean with exponent q − 1 approaches the maximum value, which is the
proportional abundance of the most abundant species in the dataset. In practice, increasing the value of q hence
increases the effective weight given to the most abundant species. This leads to obtaining a larger mean value
and a smaller true diversity (qD) value.
When q = 1, the geometric mean of the values is used, and each species is exactly weighted by its proportional 
abundance (in the geometric mean, weights are the exponents). When q > 1, the weight given to abundant species is
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exaggerated, and when q < 1, the weight given to rare species is. At q = 0, the species weights exactly cancel out the
species proportional abundances, such that mean  equals 1 / R even when all species are not equally abundant. At
q = 0, the effective number of species, , hence equals the actual number of species (R). In the context of diversity, q
is generally limited to non-negative values. This is because negative values of q would give rare species so much
more weight than abundant ones that would exceed R.
The general equation of diversity is often written in the form:

The term inside the parentheses is called the basic sum. Some popular diversity indices correspond to the basic sum
as calculated with different values of q.
For diversity of order one, an alternative equation is:

where H' is the Shannon index as calculated with natural logarithms (see below).

Richness
Richness R simply quantifies how many different types the dataset of interest contains. For example, species richness
(usually notated S) of a dataset is the number of different species in the corresponding species list. Richness is a
simple measure, so it has been a popular diversity index in ecology, where abundance data are often not available for
the datasets of interest. Because richness does not take the abundances of the types into account, it is not the same
thing as diversity, which does take abundances into account. However, if true diversity is calculated with q = 0, the
effective number of types (0D) equals the actual number of types (R).

Shannon index
The Shannon index has been a popular diversity index in the ecological literature, where it is also known as
Shannon's diversity index, the Shannon–Wiener index, the Shannon–Weaver index and the Shannon entropy. The
measure was originally proposed by Claude Shannon to quantify the entropy (uncertainty or information content) in
strings of text.[5] The idea is that the more different letters there are, and the more equal their proportional
abundances in the string of interest, the more difficult it is to correctly predict which letter will be the next one in the
string. The Shannon entropy quantifies the uncertainty (entropy or degree of surprise) associated with this prediction.
It is most often calculated as follows:

where is the proportion of characters belonging to the ith type of letter in the string of interest. In ecology, is
often the proportion of individuals belonging to the ith species in the dataset of interest. Then the Shannon entropy
quantifies the uncertainty in predicting the species identity of an individual that is taken at random from the dataset.
Although the equation is here written with natural logarithms, the base of the logarithm used when calculating the
Shannon entropy can be chosen freely. Shannon himself discussed logarithm bases 2, 10 and e, and these have since
become the most popular bases in applications that use the Shannon entropy. Each log base corresponds to a
different measurement unit, which have been called binary digits (bits), decimal digits (decits) and natural digits
(nats) for the bases 2, 10 and e, respectively. Comparing Shannon entropy values that were originally calculated with
different log bases requires converting them to the same log base: change from the base a to base b is obtained with
multiplication by logba.
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It has been shown that the Shannon index is based on the weighted geometric mean of the proportional abundances
of the types, and that it equals the logarithm of true diversity as calculated with q = 1:

This can also be written

which equals

Since the sum of the values equals unity by definition, the denominator equals the weighted geometric mean of
the values, with the values themselves being used as the weights (exponents in the equation). The term within
the parentheses hence equals true diversity 1D, and H' equals ln(1D).
When all types in the dataset of interest are equally common, all values equal 1/R, and the Shannon index hence
takes the value ln(R). The more unequal the abundances of the types, the larger the weighted geometric mean of the

values, and the smaller the corresponding Shannon entropy. If practically all abundance is concentrated to one
type, and the other types are very rare (even if there are many of them), Shannon entropy approaches zero. When
there is only one type in the dataset, Shannon entropy exactly equals zero (there is no uncertainty in predicting the
type of the next randomly chosen entity).

Simpson index
The Simpson index was introduced in 1949 by Edward H. Simpson to measure the degree of concentration when
individuals are classified into types.[6] The same index was rediscovered by Orris C. Herfindahl in 1950.[7] The
square root of the index had already been introduced in 1945 by the economist Albert O. Hirschman.[8] As a result,
the same measure is usually known as the Simpson index in ecology, and as the Herfindahl index or the
Herfindahl–Hirschman index (HHI) in economics.
The measure equals the probability that two entities taken at random from the dataset of interest represent the same
type. It equals:

This also equals the weighted arithmetic mean of the proportional abundances of the types of interest, with the
proportional abundances themselves being used as the weights. Proportional abundances are by definition
constrained to values between zero and unity, but their weighted arithmetic mean, and hence λ, can never be smaller
than 1/S, which is reached when all types are equally abundant.
By comparing the equation used to calculate λ with the equations used to calculate true diversity, it can be seen that
1/λ equals 2D, i.e. true diversity as calculated with q = 2. The original Simpson's index hence equals the
corresponding basic sum.
The interpretation of λ as the probability that two entities taken at random from the dataset of interest represent the
same type assumes that the first entity is replaced to the dataset before taking the second entity. If the dataset is very
large, sampling without replacement gives approximately the same result, but in small datasets the difference can be
substantial. If the dataset is small, and sampling without replacement is assumed, the probability of obtaining the
same type with both random draws is:
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where is the number of entities belonging to the ith type and N is the total number of entities in the dataset. This
form of the Simpson index is also known as the Hunter–Gaston index in microbiology.[9]

Since mean proportional abundance of the types increases with decreasing number of types and increasing
abundance of the most abundant type, λ obtains small values in datasets of high diversity and large values in datasets
of low diversity. This is counterintuitive behavior for a diversity index, so often such transformations of λ that
increase with increasing diversity have been used instead. The most popular of such indices have been the inverse
Simpson index (1/λ) and the Gini–Simpson index (1 − λ). Both of these have also been called the Simpson index in
the ecological literature, so care is needed to avoid accidentally comparing the different indices as if they were the
same.

Inverse Simpson index
The inverse Simpson index equals:

This simply equals true diversity of order 2, i.e. the effective number of types that is obtained when the weighted
arithmetic mean is used to quantify average proportional abundance of types in the dataset of interest.

Gini–Simpson index
The original Simpson index λ equals the probability that two entities taken at random from the dataset of interest
(with replacement) represent the same type. Its transformation 1 − λ therefore equals the probability that the two
entities represent different types. This measure is also known in ecology as the probability of interspecific encounter
(PIE)[10] and the Gini–Simpson index. It can be expressed as a transformation of true diversity of order 2:

The Gibbs–Martin index of sociology, psychology and management studies,[11] which is also known as the Blau
index, is the same measure as the Gini–Simpson index.

Berger–Parker index
The Berger–Parker index equals the maximum value in the dataset, i.e. the proportional abundance of the most
abundant type. This corresponds to the weighted generalized mean of the values when q approaches infinity, and
hence equals the inverse of true diversity of order infinity ( ).

Rényi entropy
The Rényi entropy is a generalization of the Shannon entropy to other values of q than unity. It can be expressed:

which equals

This means that taking the logarithm of true diversity based on any value of q gives the Rényi entropy corresponding
to the same value of q.
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Clustering

Hierarchical clustering
In data mining, hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters.
Strategies for hierarchical clustering generally fall into two types: [citation needed]

• Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters
are merged as one moves up the hierarchy.

• Divisive: This is a "top down" approach: all observations start in one cluster, and splits are performed recursively
as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually
presented in a dendrogram.

In the general case, the complexity of agglomerative clustering is , which makes them too slow for large
data sets. Divisive clustering with an exhaustive search is , which is even worse. However, for some special
cases, optimal efficient agglomerative methods (of complexity ) are known: SLINK for single-linkage and
CLINK for complete-linkage clustering.

Cluster dissimilarity
In order to decide which clusters should be combined (for agglomerative), or where a cluster should be split (for
divisive), a measure of dissimilarity between sets of observations is required. In most methods of hierarchical
clustering, this is achieved by use of an appropriate metric (a measure of distance between pairs of observations),
and a linkage criterion which specifies the dissimilarity of sets as a function of the pairwise distances of observations
in the sets.

Metric
The choice of an appropriate metric will influence the shape of the clusters, as some elements may be close to one
another according to one distance and farther away according to another. For example, in a 2-dimensional space, the
distance between the point (1,0) and the origin (0,0) is always 1 according to the usual norms, but the distance
between the point (1,1) and the origin (0,0) can be 2, or 1 under Manhattan distance, Euclidean distance or
maximum distance respectively.
Some commonly used metrics for hierarchical clustering are:
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Names Formula

Euclidean distance

squared Euclidean distance

Manhattan distance

maximum distance

Mahalanobis distance where S is the covariance matrix

cosine similarity

For text or other non-numeric data, metrics such as the Hamming distance or Levenshtein distance are often used.
A review of cluster analysis in health psychology research found that the most common distance measure in
published studies in that research area is the Euclidean distance or the squared Euclidean distance.[citation needed]

Linkage criteria
The linkage criterion determines the distance between sets of observations as a function of the pairwise distances
between observations.
Some commonly used linkage criteria between two sets of observations A and B are:[1]

Names Formula

Maximum or complete linkage clustering

Minimum or single-linkage clustering

Mean or average linkage clustering, or UPGMA

Minimum energy clustering

where d is the chosen metric. Other linkage criteria include:
•• The sum of all intra-cluster variance.
• The decrease in variance for the cluster being merged (Ward's criterion).
•• The probability that candidate clusters spawn from the same distribution function (V-linkage).
• The product of in-degree and out-degree on a k-nearest-neighbor graph (graph degree linkage).[2]

• The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after
merging two clusters.[3] [4] [5]
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Discussion
Hierarchical clustering has the distinct advantage that any valid measure of distance can be used. In fact, the
observations themselves are not required: all that is used is a matrix of distances.

Example for Agglomerative Clustering
For example, suppose this data is to be clustered, and the Euclidean distance is the distance metric.
Cutting the tree at a given height will give a partitioning clustering at a selected precision. In this example, cutting
after the second row of the dendrogram will yield clusters {a} {b c} {d e} {f}. Cutting after the third row will yield
clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger clusters.

Raw data

The hierarchical clustering dendrogram would be as such:

Traditional representation

This method builds the hierarchy from the individual elements by progressively merging clusters. In our example,
we have six elements {a} {b} {c} {d} {e} and {f}. The first step is to determine which elements to merge in a
cluster. Usually, we want to take the two closest elements, according to the chosen distance.
Optionally, one can also construct a distance matrix at this stage, where the number in the i-th row j-th column is the
distance between the i-th and j-th elements. Then, as clustering progresses, rows and columns are merged as the
clusters are merged and the distances updated. This is a common way to implement this type of clustering, and has
the benefit of caching distances between clusters. A simple agglomerative clustering algorithm is described in the
single-linkage clustering page; it can easily be adapted to different types of linkage (see below).
Suppose we have merged the two closest elements b and c, we now have the following clusters {a}, {b, c}, {d}, {e} 
and {f}, and want to merge them further. To do that, we need to take the distance between {a} and {b c}, and 
therefore define the distance between two clusters. Usually the distance between two clusters and is one of
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the following:
• The maximum distance between elements of each cluster (also called complete-linkage clustering):

• The minimum distance between elements of each cluster (also called single-linkage clustering):

• The mean distance between elements of each cluster (also called average linkage clustering, used e.g. in
UPGMA):

•• The sum of all intra-cluster variance.
• The increase in variance for the cluster being merged (Ward's method<ref name=")
•• The probability that candidate clusters spawn from the same distribution function (V-linkage).
Each agglomeration occurs at a greater distance between clusters than the previous agglomeration, and one can
decide to stop clustering either when the clusters are too far apart to be merged (distance criterion) or when there is a
sufficiently small number of clusters (number criterion).

Software

Open Source Frameworks
• Cluster 3.0 [6] provides a nice Graphical User Interface to access to different clustering routines and is available

for Windows, Mac OS X, Linux, Unix.
• ELKI includes multiple hierarchical clustering algorithms, various linkage strategies and also includes the

efficient SLINK algorithm, flexible cluster extraction from dendrograms and various other cluster analysis
algorithms.

• Octave, the GNU analog to MATLAB implements hierarchical clustering in linkage function [7]

• Orange, a free data mining software suite, module orngClustering [8] for scripting in Python, or cluster analysis
through visual programming.

• R has several functions for hierarchical clustering: see CRAN Task View: Cluster Analysis & Finite Mixture
Models [9] for more information.

• scikit-learn implements a hierarchical clustering based on the Ward algorithm only.
• Weka includes hierarchical cluster analysis.

Standalone implementations
• CrimeStat implements two hierarchical clustering routines, a nearest neighbor (Nnh) and a risk-adjusted(Rnnh).
• figue [10] is a JavaScript package that implements some agglomerative clustering functions (single-linkage,

complete-linkage, average-linkage) and functions to visualize clustering output (e.g. dendrograms).
• hcluster [11] is a Python implementation, based on NumPy, which supports hierarchical clustering and plotting.
• Hierarchical Agglomerative Clustering [12] implemented as C# visual studio project that includes real text files

processing, building of document-term matrix with stop words filtering and stemming.
• MultiDendrograms [13] An open source Java application for variable-group agglomerative hierarchical clustering,

with graphical user interface.
• Graph Agglomerative Clustering (GAC) toolbox [14] implemented several graph-based agglomerative clustering

algorithms.
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Commercial
• MATLAB includes hierarchical cluster analysis.
• SAS includes hierarchical cluster analysis.
• Mathematica includes a Hierarchical Clustering Package
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K-means clustering

Machine learning and
data mining

Problems

•• Classification
•• Clustering
•• Regression
•• Anomaly detection
•• Association rules
•• Reinforcement learning
•• Structured prediction
•• Feature learning
•• Online learning
•• Semi-supervised learning
•• Grammar induction

Supervised learning
(classification • regression)

•• Decision trees
• Ensembles (Bagging, Boosting, Random forest)
• k-NN
•• Linear regression
•• Naive Bayes
• Neural networks
•• Logistic regression
•• Perceptron
•• Support vector machine (SVM)

Clustering

•• BIRCH
•• Hierarchical
• k-means
•• Expectation-maximization (EM)
•• DBSCAN
•• OPTICS
•• Mean-shift

Dimensionality reduction
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•• Factor analysis
•• CCA
•• ICA
•• LDA
•• NMF
•• PCA

Structured prediction

• Graphical models (CRF, HMM)

Anomaly detection

• k-NN
•• Local outlier factor

Theory

•• Bias-variance dilemma
•• Computational learning theory
•• Empirical risk minimization
•• PAC learning
•• VC theory

•  Computer science portal
•  Statistics portal

•• v
•• t
• e [1]

k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster
analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation
belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the
data space into Voronoi cells.
The problem is computationally difficult (NP-hard); however, there are efficient heuristic algorithms that are
commonly employed and converge quickly to a local optimum. These are usually similar to the
expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach
employed by both algorithms. Additionally, they both use cluster centers to model the data; however, k-means
clustering tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows
clusters to have different shapes.

Description
Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional real vector, k-means
clustering aims to partition the n observations into k sets (k ≤ n) S = {S1, S2, …, Sk} so as to minimize the
within-cluster sum of squares (WCSS):

where μi is the mean of points in Si.
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History
The term "k-means" was first used by James MacQueen in 1967, though the idea goes back to Hugo Steinhaus in
1957. The standard algorithm was first proposed by Stuart Lloyd in 1957 as a technique for pulse-code modulation,
though it wasn't published outside of Bell Labs until 1982.[2] In 1965, E.W.Forgy published essentially the same
method, which is why it is sometimes referred to as Lloyd-Forgy. A more efficient version was proposed and
published in Fortran by Hartigan and Wong in 1975/1979.

Algorithms

Standard algorithm
The most common algorithm uses an iterative refinement technique. Due to its ubiquity it is often called the k-means
algorithm; it is also referred to as Lloyd's algorithm, particularly in the computer science community.
Given an initial set of k means m1

(1),…,mk
(1) (see below), the algorithm proceeds by alternating between two steps:

Assignment step: Assign each observation to the cluster whose mean yields the least within-cluster sum of
squares (WCSS). Since the sum of squares is the squared Euclidean distance, this is intuitively the "nearest"
mean.[3] (Mathematically, this means partitioning the observations according to the Voronoi diagram
generated by the means).

where each is assigned to exactly one , even if it could be is assigned to two or more of them.
Update step: Calculate the new means to be the centroids of the observations in the new clusters.

Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster sum of
squares (WCSS) objective.

The algorithm has converged when the assignments no longer change. Since both steps optimize the WCSS
objective, and there only exists a finite number of such partitionings, the algorithm must converge to a (local)
optimum. There is no guarantee that the global optimum is found using this algorithm.
The algorithm is often presented as assigning objects to the nearest cluster by distance. This is slightly inaccurate:
the algorithm aims at minimizing the WCSS objective, and thus assigns by "least sum of squares". Using a different
distance function other than (squared) Euclidean distance may stop the algorithm from converging. It is correct that
the smallest Euclidean distance yields the smallest squared Euclidean distance and thus also yields the smallest sum
of squares. Various modifications of k-means such as spherical k-means and k-medoids have been proposed to allow
using other distance measures.

Initialization methods

Commonly used initialization methods are Forgy and Random Partition. The Forgy method randomly chooses k
observations from the data set and uses these as the initial means. The Random Partition method first randomly
assigns a cluster to each observation and then proceeds to the update step, thus computing the initial mean to be the
centroid of the cluster's randomly assigned points. The Forgy method tends to spread the initial means out, while
Random Partition places all of them close to the center of the data set. According to Hamerly et al., the Random
Partition method is generally preferable for algorithms such as the k-harmonic means and fuzzy k-means. For
expectation maximization and standard k-means algorithms, the Forgy method of initialization is preferable.
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Demonstration of the standard algorithm

1) k initial "means" (in this
case k=3) are randomly

generated within the data
domain (shown in color).

2) k clusters are created by
associating every observation

with the nearest mean. The
partitions here represent the

Voronoi diagram generated by
the means.

3) The centroid of each of the k
clusters becomes the new mean.

4) Steps 2 and 3 are repeated
until convergence has been

reached.

As it is a heuristic algorithm, there is no guarantee that it will converge to the global optimum, and the result may
depend on the initial clusters. As the algorithm is usually very fast, it is common to run it multiple times with
different starting conditions. However, in the worst case, k-means can be very slow to converge: in particular it has
been shown that there exist certain point sets, even in 2 dimensions, on which k-means takes exponential time, that is
2Ω(n), to converge. These point sets do not seem to arise in practice: this is corroborated by the fact that the
smoothed running time of k-means is polynomial.
The "assignment" step is also referred to as expectation step, the "update step" as maximization step, making this
algorithm a variant of the generalized expectation-maximization algorithm.

Complexity
Regarding computational complexity, finding the optimal solution to the k-means clustering problem for
observations in d dimensions is:
• NP-hard in general Euclidean space d even for 2 clusters
• NP-hard for a general number of clusters k even in the plane
• If k and d (the dimension) are fixed, the problem can be exactly solved in time O(ndk+1 log n), where n is the

number of entities to be clustered
Thus, a variety of heuristic algorithms such as Lloyds algorithm given above are generally used.
• Lloyd's -means algorithm has polynomial smoothed running time. It is shown that for arbitrary set of points

in , if each point is independently perturbed by a normal distribution with mean and variance , then
the expected running time of -means algorithm is bounded by , which is a
polynomial in , , and .

• Better bounds are proved for simple cases. For example, showed that the running time of -means algorithm is
bounded by for points in an integer lattice .
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Variations

• k-medians clustering uses the median in each dimension instead of the mean, and this way minimizes norm
(Taxicab geometry).

• k-medoids (also: Partitioning Around Medoids, PAM) uses the medoid instead of the mean, and this way
minimizes the sum of distances for arbitrary distance functions.

• Fuzzy C-Means Clustering is a soft version of K-means, where each data point has a fuzzy degree of belonging to
each cluster.

• Gaussian mixture models trained with expectation-maximization algorithm (EM algorithm) maintains
probabilistic assignments to clusters, instead of deterministic assignments, and multivariate Gaussian distributions
instead of means.

• Several methods have been proposed to choose better starting clusters. One recent proposal is k-means++.
• The filtering algorithm uses kd-trees to speed up each k-means step.
• Some methods attempt to speed up each k-means step using coresets or the triangle inequality.
•• Escape local optima by swapping points between clusters.
• The Spherical k-means clustering algorithm is suitable for directional data.
• The Minkowski metric weighted k-means deals with irrelevant features by assigning cluster specific weights to

each feature

Discussion

A typical example of the k-means convergence to a local minimum. In this example, the
result of k-means clustering (the right figure) contradicts the obvious cluster structure of

the data set. The small circles are the data points, the four ray stars are the centroids
(means). The initial configuration is on the left figure. The algorithm converges after five
iterations presented on the figures, from the left to the right. The illustration was prepared

with the Mirkes Java applet.

k-means clustering result for the Iris flower data set and actual species visualized using
ELKI. Cluster means are marked using larger, semi-transparent symbols.

The two key features of k-means which
make it efficient are often regarded as
its biggest drawbacks:

• Euclidean distance is used as a
metric and variance is used as a
measure of cluster scatter.

• The number of clusters k is an input
parameter: an inappropriate choice
of k may yield poor results. That is
why, when performing k-means, it
is important to run diagnostic
checks for determining the number
of clusters in the data set.

•• Convergence to a local minimum
may produce counterintuitive
("wrong") results (see example in
Fig.).

A key limitation of k-means is its
cluster model. The concept is based on
spherical clusters that are separable in
a way so that the mean value
converges towards the cluster center. The clusters are expected to be of similar size, so that the assignment to
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k-means clustering and EM clustering on an artificial dataset ("mouse"). The tendency of
k-means to produce equi-sized clusters leads to bad results, while EM benefits from the

Gaussian distribution present in the data set

the nearest cluster center is the correct
assignment. When for example
applying k-means with a value of onto
the well-known Iris flower data set, the
result often fails to separate the three
Iris species contained in the data set.
With , the two visible clusters (one
containing two species) will be
discovered, whereas with one of the
two clusters will be split into two even
parts. In fact, is more appropriate for
this data set, despite the data set
containing 3 classes. As with any other clustering algorithm, the k-means result relies on the data set to satisfy the
assumptions made by the clustering algorithms. It works well on some data sets, while failing on others.

The result of k-means can also be seen as the Voronoi cells of the cluster means. Since data is split halfway between
cluster means, this can lead to suboptimal splits as can be seen in the "mouse" example. The Gaussian models used
by the Expectation-maximization algorithm (which can be seen as a generalization of k-means) are more flexible
here by having both variances and covariances. The EM result is thus able to accommodate clusters of variable size
much better than k-means as well as correlated clusters (not in this example).

Applications
k-means clustering in particular when using heuristics such as Lloyd's algorithm is rather easy to implement and
apply even on large data sets. As such, it has been successfully used in various topics, ranging from market
segmentation, computer vision, geostatistics,[4] and astronomy to agriculture. It often is used as a preprocessing step
for other algorithms, for example to find a starting configuration.

Vector quantization

Two-channel (for illustration purposes -- red and
green only) color image.

k-means originates from signal processing, and still finds use in this
domain. For example in computer graphics, color quantization is the
task of reducing the color palette of an image to a fixed number of
colors k. The k-means algorithm can easily be used for this task and
produces competitive results. Other uses of vector quantization include
non-random sampling, as k-means can easily be used to choose k
different but prototypical objects from a large data set for further
analysis.

Cluster analysis

In cluster analysis, the k-means algorithm can be used to partition the
input data set into k partitions (clusters).

However, the pure k-means algorithm is not very flexible, and as such
of limited use (except for when
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Vector quantization of colors present in the image above into
Voronoi cells using k-means.

vector quantization as above is actually the desired use
case!). In particular, the parameter k is known to be
hard to choose (as discussed below) when not given by
external constraints. In contrast to other algorithms,
k-means can also not be used with arbitrary distance
functions or be use on non-numerical data. For these
use cases, many other algorithms have been developed
since.

Feature learning

k-means clustering has been used as a feature learning
(or dictionary learning) step, which can be used in the
for (semi-)supervised learning or unsupervised
learning. The basic approach is first to train a k-means
clustering representation, using the input training data
(which need not be labelled). Then, to project any input
datum into the new feature space, we have a choice of
"encoding" functions, but we can use for example the
thresholded matrix-product of the datum with the centroid locations, the distance from the datum to each centroid, or
simply an indicator function for the nearest centroid, or some smooth transformation of the distance. Alternatively,
by transforming the sample-cluster distance through a Gaussian RBF, one effectively obtains the hidden layer of a
radial basis function network.

This use of k-means has been successfully combined with simple, linear classifiers for semi-supervised learning in
NLP (specifically for named entity recognition) and in computer vision. On an object recognition task, it was found
to exhibit comparable performance with more sophisticated feature learning approaches such as autoencoders and
restricted Boltzmann machines. However, it generally requires more data than the sophisticated methods, for
equivalent performance, because each data point only contributes to one "feature" rather than multiple.

Relation to other statistical machine learning algorithms
k-means clustering, and its associated expectation-maximization algorithm, is a special case of a Gaussian mixture
model, specifically, the limit of taking all covariances as diagonal, equal, and small. It is often easy to generalize a
k-means problem into a Gaussian mixture model. Another generalization of the k-means algorithm is the K-SVD
algorithm, which estimates data points as a sparse linear combination of "codebook vectors". K-means corresponds
to the special case of using a single codebook vector, with a weight of 1.

Mean shift clustering
Basic mean shift clustering algorithms maintain a set of data points the same size as the input data set. Initially, this 
set is copied from the input set. Then this set is iteratively replaced by the mean of those points in the set that are 
within a given distance of that point. By contrast, k-means restricts this updated set to k points usually much less than 
the number of points in the input data set, and replaces each point in this set by the mean of all points in the input set 
that are closer to that point than any other (e.g. within the Voronoi partition of each updating point). A mean shift 
algorithm that is similar then to k-means, called likelihood mean shift, replaces the set of points undergoing 
replacement by the mean of all points in the input set that are within a given distance of the changing set. One of the 
advantages of mean shift over k-means is that there is no need to choose the number of clusters, because mean shift 
is likely to find only a few clusters if indeed only a small number exist. However, mean shift can be much slower
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than k-means, and still requires selection of a bandwidth parameter. Mean shift has soft variants much as k-means
does.

Principal component analysis (PCA)
It was asserted in that the relaxed solution of k-means clustering, specified by the cluster indicators, is given by the
PCA (principal component analysis) principal components, and the PCA subspace spanned by the principal
directions is identical to the cluster centroid subspace. However, that PCA is a useful relaxation of k-means
clustering was not a new result (see, for example,), and it is straightforward to uncover counterexamples to the
statement that the cluster centroid subspace is spanned by the principal directions[citation needed].

Bilateral filtering
k-means implicitly assumes that the ordering of the input data set does not matter. The bilateral filter is similar to
K-means and mean shift in that it maintains a set of data points that are iteratively replaced by means. However, the
bilateral filter restricts the calculation of the (kernel weighted) mean to include only points that are close in the
ordering of the input data. This makes it applicable to problems such as image denoising, where the spatial
arrangement of pixels in an image is of critical importance.

Similar problems
The set of squared error minimizing cluster functions also includes the k-medoids algorithm, an approach which
forces the center point of each cluster to be one of the actual points, i.e., it uses medoids in place of centroids.

Software

Free
• Apache Mahout k-Means [5]

• CrimeStat implements two spatial K-means algorithms, one of which allows the user to define the starting
locations.

• ELKI contains k-means (with Lloyd and MacQueen iteration, along with different initializations such as
k-means++ initialization) and various more advanced clustering algorithms

• MLPACK contains a C++ implementation of k-means
• R kmeans [6] implements a variety of algorithms
• SciPy vector-quantization [7]

• Scikit-learn implements a popular python machine-learning library which contains various clustering algorithms
• Silverlight widget demonstrating k-means algorithm [8]

• PostgreSQL extension for k-means [9]

• CMU's GraphLab Clustering library [10] Efficient multicore implementation for large scale data.
• Weka contains k-means and a few variants of it, including k-means++ and x-means.
• Spectral Python [11] contains methods for unsupervised classification including a K-means clustering method.
• scikit learn [12] machine learning in Python contains a K-Means implementation
• OpenCV contains a K-means [13] implementation under BSD licence.
• Yael [14] includes an efficient multi-threaded C implementation of k-means, with C, Python and Matlab interfaces.
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Commercial
•• IDL Cluster, Clust_Wts
• Mathematica ClusteringComponents function [15]

• MATLAB kmeans [16]

• SAS FASTCLUS [17]

• Stata kmeans [18]

• VisuMap kMeans Clustering [19]

Source code
• ELKI and Weka are written in Java and include k-means and variations
• K-means application in PHP,[20] using VB,[21] using Perl,[22] using C++,[23] using Matlab,[24] using Ruby,[25][26]

using Python with scipy,[27] using X10[28]

• A parallel out-of-core implementation in C[29]

• An open-source collection of clustering algorithms, including k-means, implemented in Javascript.[30] Online
demo.[31]

Visualization, animation and examples
• ELKI can visualize k-means using Voronoi cells and Delaunay triangulation for 2D data. In higher

dimensionality, only cluster assignments and cluster centers are visualized
• Demos of the K-means-algorithm[32][33][34][35][36][37]

• K-means and K-medoids (Applet), University of Leicester[]

• Clustergram - cluster diagnostic plot - for visual diagnostics of choosing the number of (k) clusters (R code)[38]
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Matrix

Matrix (mathematics)

Specific elements of a matrix are often denoted by a variable with
two subscripts. For instance, a2,1 represents the element at the

second row and first column of a matrix A.

In mathematics, a matrix (plural matrices) is a
rectangular array[1] of numbers, symbols, or
expressions, arranged in rows and columns. The
individual items in a matrix are called its elements or
entries. An example of a matrix with 2 rows and 3
columns is

Matrices of the same size can be added or subtracted
element by element. But the rule for matrix
multiplication is that two matrices can be multiplied
only when the number of columns in the first equals the
number of rows in the second. A major application of
matrices is to represent linear transformations, that is,
generalizations of linear functions such as f(x) = 4x. For
example, the rotation of vectors in three dimensional
space is a linear transformation. If R is a rotation matrix and v is a column vector (a matrix with only one column)
describing the position of a point in space, the product Rv is a column vector describing the position of that point
after a rotation. The product of two matrices is a matrix that represents the composition of two linear
transformations. Another application of matrices is in the solution of a system of linear equations. If the matrix is
square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has
an inverse if and only if its determinant is not zero. Eigenvalues and eigenvectors provide insight into the geometry
of linear transformations.

Applications of matrices are found in most scientific fields. In every branch of physics, including classical
mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study
physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a
3-dimensional image onto a 2-dimensional screen. In probability theory and statistics, stochastic matrices are used to
describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a
Google search.[2] Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to
higher dimensions.
A major branch of numerical analysis is devoted to the development of efficient algorithms for matrix computations,
a subject that is centuries old and is today an expanding area of research. Matrix decomposition methods simplify
computations, both theoretically and practically. Algorithms that are tailored to particular matrix structures, such as
sparse matrices and near-diagonal matrices, expedite computations in finite element method and other computations.
Infinite matrices occur in planetary theory and in atomic theory. A simple example of an infinite matrix is the matrix
representing the derivative operator, which acts on the Taylor series of a function.
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Definition
A matrix is a rectangular array of numbers or other mathematical objects, for which operations such as addition and
multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars from F. Most of
this article focuses on real and complex matrices, i.e., matrices whose elements are real numbers or complex
numbers, respectively. More general types of entries are discussed below. For instance, this is a real matrix:

The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical
lines of entries in a matrix are called rows and columns, respectively.

Size
The size of a matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n
columns is called an m × n matrix or m-by-n matrix, while m and n are called its dimensions. For example, the matrix
A above is a 3 × 2 matrix.
Matrices which have a single row are called row vectors, and those which have a single column are called column
vectors. A matrix which has the same number of rows and columns is called a square matrix. A matrix with an
infinite number of rows or columns (or both) is called an infinite matrix. In some contexts such as computer algebra
programs it is useful to consider a matrix with no rows or no columns, called an empty matrix.

Name Size Example Description

Row vector 1 × n A matrix with one row, sometimes used to represent a vector

Column
vector

n × 1 A matrix with one column, sometimes used to represent a vector

Square
matrix

n × n A matrix with the same number of rows and columns, sometimes used to represent a linear transformation
from a vector space to itself, such as reflection, rotation, or shearing.

Notation
Matrices are commonly written in box brackets:

An alternative notation uses large parentheses instead of box brackets:

The specifics of symbolic matrix notation varies widely, with some prevailing trends. Matrices are usually 
symbolized using upper-case letters (such as A in the examples above), while the corresponding lower-case letters, 
with two subscript indices (e.g., a11, or a1,1), represent the entries. In addition to using upper-case letters to 
symbolize matrices, many authors use a special typographical style, commonly boldface upright (non-italic), to
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further distinguish matrices from other mathematical objects. An alternative notation involves the use of a
double-underline with the variable name, with or without boldface style, (e.g., ).
The entry in the i-th row and j-th column of a matrix A is sometimes referred to as the i,j, (i,j), or (i,j)th entry of the
matrix, and most commonly denoted as ai,j, or aij. Alternative notations for that entry are A[i,j] or Ai,j. For example,
the (1,3) entry of the following matrix A is 5 (also denoted a13, a1,3, A[1,3] or A1,3):

Sometimes, the entries of a matrix can be defined by a formula such as ai,j = f(i, j). For example, each of the entries
of the following matrix A is determined by aij = i − j.

In this case, the matrix itself is sometimes defined by that formula, within square brackets or double parenthesis. For
example, the matrix above is defined as A = [i-j], or A = ((i-j)). If matrix size is m × n, the above-mentioned formula
f(i, j) is valid for any i = 1, ..., m and any j = 1, ..., n. This can be either specified separately, or using m × n as a
subscript. For instance, the matrix A above is 3 × 4 and can be defined as A = [i − j] (i = 1, 2, 3; j = 1, ..., 4), or A =
[i − j]3×4.
Some programming languages utilize doubly-subscripted arrays (or arrays of arrays) to represent an m-×-n matrix.
Some programming languages start the numbering of array indexes at zero, in which case the entries of an m-by-n
matrix are indexed by 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. This article follows the more common convention in
mathematical writing where enumeration starts from 1.
The set of all m-by-n matrices is denoted ᵔ�(m, n).

Basic operations
 How to organize, add and multiply matrices - Bill Shillito [3], TED ED

There are a number of basic operations that can be applied to modify matrices, called matrix addition, scalar
multiplication, transposition, matrix multiplication, row operations, and submatrix.

Addition, scalar multiplication and transposition

Operation Definition Example

Addition The sum A+B of two m-by-n matrices A and B is
calculated entrywise:

(A + B)i,j = Ai,j + Bi,j, where 1 ≤ i ≤ m and
1 ≤ j ≤ n.

Scalar
multiplication

The scalar multiplication cA of a matrix A and a
number c (also called a scalar in the parlance of
abstract algebra) is given by multiplying every
entry of A by c:

(cA)i,j = c · Ai,j.

Transpose The transpose of an m-by-n matrix A is the n-by-m
matrix AT (also denoted Atr or tA) formed by
turning rows into columns and vice versa:

(AT)i,j = Aj,i.
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Familiar properties of numbers extend to these operations of matrices: for example, addition is commutative, i.e., the
matrix sum does not depend on the order of the summands: A + B = B + A. The transpose is compatible with
addition and scalar multiplication, as expressed by (cA)T = c(AT) and (A + B)T = AT + BT. Finally, (AT)T = A.

Matrix multiplication

Schematic depiction of the matrix product AB of two
matrices A and B.

Multiplication of two matrices is defined only if the number of
columns of the left matrix is the same as the number of rows of the
right matrix. If A is an m-by-n matrix and B is an n-by-p matrix,
then their matrix product AB is the m-by-p matrix whose entries
are given by dot product of the corresponding row of A and the
corresponding column of B:

,

where 1 ≤ i ≤ m and 1 ≤ j ≤ p. For example, the underlined entry
2340 in the product is calculated as (2 × 1000) + (3 × 100) + (4 ×
10) = 2340:

Matrix multiplication satisfies the rules (AB)C = A(BC) (associativity), and (A+B)C = AC+BC as well as C(A+B)
= CA+CB (left and right distributivity), whenever the size of the matrices is such that the various products are
defined. The product AB may be defined without BA being defined, namely if A and B are m-by-n and n-by-k
matrices, respectively, and m ≠ k. Even if both products are defined, they need not be equal, i.e., generally one has

AB ≠ BA,
i.e., matrix multiplication is not commutative, in marked contrast to (rational, real, or complex) numbers whose
product is independent of the order of the factors. An example of two matrices not commuting with each other is:

whereas

Besides the ordinary matrix multiplication just described, there exist other less frequently used operations on
matrices that can be considered forms of multiplication, such as the Hadamard product and the Kronecker product.
They arise in solving matrix equations such as the Sylvester equation.
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Row operations
There are three types of row operations:
1.1. row addition, that is adding a row to another.
2.2. row multiplication, that is multiplying all entries of a row by a non-zero constant;
3.3. row switching, that is interchanging two rows of a matrix;
These operations are used in a number of ways, including solving linear equations and finding matrix inverses.

Submatrix
A submatrix of a matrix is obtained by deleting any collection of rows and/or columns. For example, for the
following 3-by-4 matrix, we can construct a 2-by-3 submatrix by removing row 3 and column 2:

The minors and cofactors of a matrix are found by computing the determinant of certain submatrices.

Linear equations
Matrices can be used to compactly write and work with multiple linear equations, i.e., systems of linear equations.
For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn,
and b is an m×1-column vector, then the matrix equation

Ax = b
is equivalent to the system of linear equations

A1,1x1 + A1,2x2 + ... + A1,nxn = b1
...
Am,1x1 + Am,2x2 + ... + Am,nxn = bm .

Linear transformations

The vectors represented by a 2-by-2 matrix
correspond to the sides of a unit square

transformed into a parallelogram.

Matrices and matrix multiplication reveal their essential features when
related to linear transformations, also known as linear maps. A real
m-by-n matrix A gives rise to a linear transformation Rn → Rm

mapping each vector x in Rn to the (matrix) product Ax, which is a
vector in Rm. Conversely, each linear transformation f: Rn → Rm arises
from a unique m-by-n matrix A: explicitly, the (i, j)-entry of A is the ith

coordinate of f(ej), where ej = (0,...,0,1,0,...,0) is the unit vector with 1
in the jth position and 0 elsewhere. The matrix A is said to represent the
linear map f, and A is called the transformation matrix of f.

For example, the 2×2 matrix

can be viewed as the transform of the unit square into a parallelogram
with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d). The
parallelogram pictured at the right is obtained by multiplying A with
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each of the column vectors and in turn. These vectors define the vertices of the unit square.

The following table shows a number of 2-by-2 matrices with the associated linear maps of R2. The blue original is
mapped to the green grid and shapes. The origin (0,0) is marked with a black point.

Horizontal shear with m=1.25. Horizontal flip Squeeze mapping with r=3/2 Scaling by a factor of 3/2 Rotation by π/6R = 30°

Under the 1-to-1 correspondence between matrices and linear maps, matrix multiplication corresponds to
composition of maps: if a k-by-m matrix B represents another linear map g : Rm → Rk, then the composition g ∘ f is
represented by BA since

(g ∘ f)(x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.
The last equality follows from the above-mentioned associativity of matrix multiplication.
The rank of a matrix A is the maximum number of linearly independent row vectors of the matrix, which is the same
as the maximum number of linearly independent column vectors. Equivalently it is the dimension of the image of the
linear map represented by A. The rank-nullity theorem states that the dimension of the kernel of a matrix plus the
rank equals the number of columns of the matrix.

Square matrices
A square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square
matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries aii form the
main diagonal of a square matrix. They lie on the imaginary line which runs from the top left corner to the bottom
right corner of the matrix.

Main types

Name Example with n = 3

Diagonal matrix

Lower triangular matrix

Upper triangular matrix
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Diagonal and triangular matrices

If all entries of A below the main diagonal are zero, A is called an upper triangular matrix. Similarly if all entries of
A above the main diagonal are zero, A is called a lower triangular matrix. If all entries outside the main diagonal are
zero, A is called a diagonal matrix.

Identity matrix

The identity matrix In of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and
all other elements are equal to 0, e.g.

It is a square matrix of order n, and also a special kind of diagonal matrix. It is called identity matrix because
multiplication with it leaves a matrix unchanged:

AIn = ImA = A for any m-by-n matrix A.

Symmetric or skew-symmetric matrix

A square matrix A that is equal to its transpose, i.e., A = AT, is a symmetric matrix. If instead, A was equal to the
negative of its transpose, i.e., A = −AT, then A is a skew-symmetric matrix. In complex matrices, symmetry is often
replaced by the concept of Hermitian matrices, which satisfy A∗ = A, where the star or asterisk denotes the conjugate
transpose of the matrix, i.e., the transpose of the complex conjugate of A.
By the spectral theorem, real symmetric matrices and complex Hermitian matrices have an eigenbasis; i.e., every
vector is expressible as a linear combination of eigenvectors. In both cases, all eigenvalues are real. This theorem can
be generalized to infinite-dimensional situations related to matrices with infinitely many rows and columns, see
below.

Invertible matrix and its inverse

A square matrix A is called invertible or non-singular if there exists a matrix B such that
AB = BA = In.

If B exists, it is unique and is called the inverse matrix of A, denoted A−1.

Definite matrix

Positive definite matrix Indefinite matrix

Q(x,y) = 1/4 x2 + y2 Q(x,y) = 1/4 x2 − 1/4 y2

Points such that Q(x,y)=1
(Ellipse).

Points such that Q(x,y)=1
(Hyperbola).

A symmetric n×n-matrix is called positive-definite (respectively negative-definite; indefinite), if for all nonzero
vectors x ∈ Rn the associated quadratic form given by
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Q(x) = xTAx

takes only positive values (respectively only negative values; both some negative and some positive values). If the
quadratic form takes only non-negative (respectively only non-positive) values, the symmetric matrix is called
positive-semidefinite (respectively negative-semidefinite); hence the matrix is indefinite precisely when it is neither
positive-semidefinite nor negative-semidefinite.
A symmetric matrix is positive-definite if and only if all its eigenvalues are positive. The table at the right shows two
possibilities for 2-by-2 matrices.
Allowing as input two different vectors instead yields the bilinear form associated to A:

B
A 

(x, y) = xTAy.

Orthogonal matrix

An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e.,
orthonormal vectors). Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse:

which entails

where I is the identity matrix.
An orthogonal matrix A is necessarily invertible (with inverse A−1 = AT), unitary (A−1 = A*), and normal (A*A =
AA*). The determinant of any orthogonal matrix is either +1 or −1. A special orthogonal matrix is an orthogonal
matrix with determinant +1. As a linear transformation, every orthogonal matrix with determinant +1 is a pure
rotation, while every orthogonal matrix with determinant -1 is either a pure reflection, or a composition of reflection
and rotation.
The complex analogue of an orthogonal matrix is a unitary matrix.

Main operations

Trace

The trace, tr(A) of a square matrix A is the sum of its diagonal entries. While matrix multiplication is not
commutative as mentioned above, the trace of the product of two matrices is independent of the order of the factors:

tr(AB) = tr(BA).
This is immediate from the definition of matrix multiplication:

Also, the trace of a matrix is equal to that of its transpose, i.e.,
tr(A) = tr(AT).
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Determinant

A linear transformation on R2 given by the indicated matrix. The determinant of
this matrix is −1, as the area of the green parallelogram at the right is 1, but the

map reverses the orientation, since it turns the counterclockwise orientation of the
vectors to a clockwise one.

The determinant det(A) or |A| of a square
matrix A is a number encoding certain
properties of the matrix. A matrix is
invertible if and only if its determinant is
nonzero. Its absolute value equals the area
(in R2) or volume (in R3) of the image of
the unit square (or cube), while its sign
corresponds to the orientation of the
corresponding linear map: the determinant is
positive if and only if the orientation is
preserved.

The determinant of 2-by-2 matrices is given
by

The determinant of 3-by-3 matrices involves 6 terms (rule of Sarrus). The more lengthy Leibniz formula generalises
these two formulae to all dimensions.

The determinant of a product of square matrices equals the product of their determinants:
det(AB) = det(A) · det(B).

Adding a multiple of any row to another row, or a multiple of any column to another column, does not change the
determinant. Interchanging two rows or two columns affects the determinant by multiplying it by −1. Using these
operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices the
determinant equals the product of the entries on the main diagonal; this provides a method to calculate the
determinant of any matrix. Finally, the Laplace expansion expresses the determinant in terms of minors, i.e.,
determinants of smaller matrices. This expansion can be used for a recursive definition of determinants (taking as
starting case the determinant of a 1-by-1 matrix, which is its unique entry, or even the determinant of a 0-by-0
matrix, which is 1), that can be seen to be equivalent to the Leibniz formula. Determinants can be used to solve
linear systems using Cramer's rule, where the division of the determinants of two related square matrices equates to
the value of each of the system's variables.

Eigenvalues and eigenvectors

A number λ and a non-zero vector v satisfying
Av = λv

are called an eigenvalue and an eigenvector of A, respectively.[4] The number λ is an eigenvalue of an n×n-matrix A
if and only if A−λIn is not invertible, which is equivalent to

The polynomial p
A 

in an indeterminate X given by evaluation the determinant det(XIn−A) is called the characteristic
polynomial of A. It is a monic polynomial of degree n. Therefore the polynomial equation p

A
(λ) = 0 has at most n

different solutions, i.e., eigenvalues of the matrix. They may be complex even if the entries of A are real. According
to the Cayley–Hamilton theorem, p

A
(A) = 0, that is, the result of substituting the matrix itself into its own

characteristic polynomial yields the zero matrix.

https://en.wikipedia.org/w/index.php?title=Orientation_%28mathematics%29
https://en.wikipedia.org/w/index.php?title=File%3ADeterminant_example.svg
https://en.wikipedia.org/w/index.php?title=If_and_only_if
https://en.wikipedia.org/w/index.php?title=Absolute_value
https://en.wikipedia.org/w/index.php?title=Rule_of_Sarrus
https://en.wikipedia.org/w/index.php?title=Leibniz_formula_for_determinants
https://en.wikipedia.org/w/index.php?title=Laplace_expansion
https://en.wikipedia.org/w/index.php?title=Linear_system
https://en.wikipedia.org/w/index.php?title=Cramer%27s_rule
https://en.wikipedia.org/w/index.php?title=Logical_equivalence
https://en.wikipedia.org/w/index.php?title=Indeterminate_%28variable%29
https://en.wikipedia.org/w/index.php?title=Characteristic_polynomial
https://en.wikipedia.org/w/index.php?title=Characteristic_polynomial
https://en.wikipedia.org/w/index.php?title=Monic_polynomial
https://en.wikipedia.org/w/index.php?title=Degree_of_a_polynomial
https://en.wikipedia.org/w/index.php?title=Cayley%E2%80%93Hamilton_theorem
https://en.wikipedia.org/w/index.php?title=Zero_matrix


Matrix (mathematics) 234

Computational aspects
Matrix calculations can be often performed with different techniques. Many problems can be solved by both direct
algorithms or iterative approaches. For example, the eigenvectors of a square matrix can be obtained by finding a
sequence of vectors xn converging to an eigenvector when n tends to infinity.
To be able to choose the more appropriate algorithm for each specific problem, it is important to determine both the
effectiveness and precision of all the available algorithms. The domain studying these matters is called numerical
linear algebra. As with other numerical situations, two main aspects are the complexity of algorithms and their
numerical stability.
Determining the complexity of an algorithm means finding upper bounds or estimates of how many elementary
operations such as additions and multiplications of scalars are necessary to perform some algorithm, e.g.,
multiplication of matrices. For example, calculating the matrix product of two n-by-n matrix using the definition
given above needs n3 multiplications, since for any of the n2 entries of the product, n multiplications are necessary.
The Strassen algorithm outperforms this "naive" algorithm; it needs only n2.807 multiplications. A refined approach
also incorporates specific features of the computing devices.
In many practical situations additional information about the matrices involved is known. An important case are
sparse matrices, i.e., matrices most of whose entries are zero. There are specifically adapted algorithms for, say,
solving linear systems Ax = b for sparse matrices A, such as the conjugate gradient method.
An algorithm is, roughly speaking, numerically stable, if little deviations in the input values do not lead to big
deviations in the result. For example, calculating the inverse of a matrix via Laplace's formula (Adj (A) denotes the
adjugate matrix of A)

A−1 = Adj(A) / det(A)
may lead to significant rounding errors if the determinant of the matrix is very small. The norm of a matrix can be
used to capture the conditioning of linear algebraic problems, such as computing a matrix' inverse.
Although most computer languages are not designed with commands or libraries for matrices, as early as the 1970s,
some engineering desktop computers such as the HP 9830 had ROM cartridges to add BASIC commands for
matrices. Some computer languages such as APL were designed to manipulate matrices, and various mathematical
programs can be used to aid computing with matrices.[5]

Decomposition
There are several methods to render matrices into a more easily accessible form. They are generally referred to as
matrix decomposition or matrix factorization techniques. The interest of all these techniques is that they preserve
certain properties of the matrices in question, such as determinant, rank or inverse, so that these quantities can be
calculated after applying the transformation, or that certain matrix operations are algorithmically easier to carry out
for some types of matrices.
The LU decomposition factors matrices as a product of lower (L) and an upper triangular matrices (U). Once this
decomposition is calculated, linear systems can be solved more efficiently, by a simple technique called forward and
back substitution. Likewise, inverses of triangular matrices are algorithmically easier to calculate. The Gaussian
elimination is a similar algorithm; it transforms any matrix to row echelon form. Both methods proceed by
multiplying the matrix by suitable elementary matrices, which correspond to permuting rows or columns and adding
multiples of one row to another row. Singular value decomposition expresses any matrix A as a product UDV∗,
where U and V are unitary matrices and D is a diagonal matrix.
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An example of a matrix in Jordan normal form. The grey blocks are
called Jordan blocks.

The eigendecomposition or diagonalization expresses
A as a product VDV−1, where D is a diagonal matrix
and V is a suitable invertible matrix. If A can be written
in this form, it is called diagonalizable. More generally,
and applicable to all matrices, the Jordan
decomposition transforms a matrix into Jordan normal
form, that is to say matrices whose only nonzero entries
are the eigenvalues λ1 to λn of A, placed on the main
diagonal and possibly entries equal to one directly
above the main diagonal, as shown at the right. Given
the eigendecomposition, the nth power of A (i.e., n-fold
iterated matrix multiplication) can be calculated via

An = (VDV−1)n = VDV−1VDV−1...VDV−1 =
VDnV−1

and the power of a diagonal matrix can be calculated by
taking the corresponding powers of the diagonal
entries, which is much easier than doing the
exponentiation for A instead. This can be used to compute the matrix exponential eA, a need frequently arising in
solving linear differential equations, matrix logarithms and square roots of matrices. To avoid numerically
ill-conditioned situations, further algorithms such as the Schur decomposition can be employed.

Abstract algebraic aspects and generalizations
Matrices can be generalized in different ways. Abstract algebra uses matrices with entries in more general fields or
even rings, while linear algebra codifies properties of matrices in the notion of linear maps. It is possible to consider
matrices with infinitely many columns and rows. Another extension are tensors, which can be seen as
higher-dimensional arrays of numbers, as opposed to vectors, which can often be realised as sequences of numbers,
while matrices are rectangular or two-dimensional array of numbers. Matrices, subject to certain requirements tend
to form groups known as matrix groups.

Matrices with more general entries
This article focuses on matrices whose entries are real or complex numbers. However, matrices can be considered
with much more general types of entries than real or complex numbers. As a first step of generalization, any field,
i.e., a set where addition, subtraction, multiplication and division operations are defined and well-behaved, may be
used instead of R or C, for example rational numbers or finite fields. For example, coding theory makes use of
matrices over finite fields. Wherever eigenvalues are considered, as these are roots of a polynomial they may exist
only in a larger field than that of the coefficients of the matrix; for instance they may be complex in case of a matrix
with real entries. The possibility to reinterpret the entries of a matrix as elements of a larger field (e.g., to view a real
matrix as a complex matrix whose entries happen to be all real) then allows considering each square matrix to
possess a full set of eigenvalues. Alternatively one can consider only matrices with entries in an algebraically closed
field, such as C, from the outset.
More generally, abstract algebra makes great use of matrices with entries in a ring R. Rings are a more general 
notion than fields in that a division operation need not exist. The very same addition and multiplication operations of 
matrices extend to this setting, too. The set M(n, R) of all square n-by-n matrices over R is a ring called matrix ring, 
isomorphic to the endomorphism ring of the left R-module Rn. If the ring R is commutative, i.e., its multiplication is 
commutative, then M(n, R) is a unitary noncommutative (unless n = 1) associative algebra over R. The determinant
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of square matrices over a commutative ring R can still be defined using the Leibniz formula; such a matrix is
invertible if and only if its determinant is invertible in R, generalising the situation over a field F, where every
nonzero element is invertible. Matrices over superrings are called supermatrices.
Matrices do not always have all their entries in the same ring – or even in any ring at all. One special but common
case is block matrices, which may be considered as matrices whose entries themselves are matrices. The entries need
not be quadratic matrices, and thus need not be members of any ordinary ring; but their sizes must fulfil certain
compatibility conditions.

Relationship to linear maps
Linear maps Rn → Rm are equivalent to m-by-n matrices, as described above. More generally, any linear map f: V →
W between finite-dimensional vector spaces can be described by a matrix A = (aij), after choosing bases v1, ..., vn of
V, and w1, ..., wm of W (so n is the dimension of V and m is the dimension of W), which is such that

In other words, column j of A expresses the image of vj in terms of the basis vectors wi of W; thus this relation
uniquely determines the entries of the matrix A. Note that the matrix depends on the choice of the bases: different
choices of bases give rise to different, but equivalent matrices. Many of the above concrete notions can be
reinterpreted in this light, for example, the transpose matrix AT describes the transpose of the linear map given by A,
with respect to the dual bases.
These properties can be restated in a more natural way: the category of all matrices with entries in a field with
multiplication as composition is equivalent to the category of finite dimensional vector spaces and linear maps over
this field.
More generally, the set of m×n matrices can be used to represent the R-linear maps between the free modules Rm and
Rn for an arbitrary ring R with unity. When n = m composition of these maps is possible, and this gives rise to the
matrix ring of n×n matrices representing the endomorphism ring of Rn.

Matrix groups
A group is a mathematical structure consisting of a set of objects together with a binary operation, i.e., an operation
combining any two objects to a third, subject to certain requirements.[6] A group in which the objects are matrices
and the group operation is matrix multiplication is called a matrix group.[7] Since in a group every element has to be
invertible, the most general matrix groups are the groups of all invertible matrices of a given size, called the general
linear groups.
Any property of matrices that is preserved under matrix products and inverses can be used to define further matrix
groups. For example, matrices with a given size and with a determinant of 1 form a subgroup of (i.e., a smaller group
contained in) their general linear group, called a special linear group. Orthogonal matrices, determined by the
condition

MTM = I,
form the orthogonal group. Every orthogonal matrix has determinant 1 or −1. Orthogonal matrices with determinant
1 form a subgroup called special orthogonal group.
Every finite group is isomorphic to a matrix group, as one can see by considering the regular representation of the
symmetric group. General groups can be studied using matrix groups, which are comparatively well-understood, by
means of representation theory.[8]
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Infinite matrices
It is also possible to consider matrices with infinitely many rows and/or columns[9] even if, being infinite objects,
one cannot write down such matrices explicitly. All that matters is that for every element in the set indexing rows,
and every element in the set indexing columns, there is a well-defined entry (these index sets need not even be
subsets of the natural numbers). The basic operations of addition, subtraction, scalar multiplication and transposition
can still be defined without problem; however matrix multiplication may involve infinite summations to define the
resulting entries, and these are not defined in general.

If R is any ring with unity, then the ring of endomorphisms of as a right R module is isomorphic to the

ring of column finite matrices whose entries are indexed by , and whose columns each contain
only finitely many nonzero entries. The endomorphisms of M considered as a left R module result in an analogous
object, the row finite matrices whose rows each only have finitely many nonzero entries.
If infinite matrices are used to describe linear maps, then only those matrices can be used all of whose columns have
but a finite number of nonzero entries, for the following reason. For a matrix A to describe a linear map f: V→W,
bases for both spaces must have been chosen; recall that by definition this means that every vector in the space can
be written uniquely as a (finite) linear combination of basis vectors, so that written as a (column) vector v of
coefficients, only finitely many entries vi are nonzero. Now the columns of A describe the images by f of individual
basis vectors of V in the basis of W, which is only meaningful if these columns have only finitely many nonzero
entries. There is no restriction on the rows of A however: in the product A·v there are only finitely many nonzero
coefficients of v involved, so every one of its entries, even if it is given as an infinite sum of products, involves only
finitely many nonzero terms and is therefore well defined. Moreover this amounts to forming a linear combination of
the columns of A that effectively involves only finitely many of them, whence the result has only finitely many
nonzero entries, because each of those columns do. One also sees that products of two matrices of the given type is
well defined (provided as usual that the column-index and row-index sets match), is again of the same type, and
corresponds to the composition of linear maps.
If R is a normed ring, then the condition of row or column finiteness can be relaxed. With the norm in place,
absolutely convergent series can be used instead of finite sums. For example, the matrices whose column sums are
absolutely convergent sequences form a ring. Analogously of course, the matrices whose row sums are absolutely
convergent series also form a ring.
In that vein, infinite matrices can also be used to describe operators on Hilbert spaces, where convergence and
continuity questions arise, which again results in certain constraints that have to be imposed. However, the explicit
point of view of matrices tends to obfuscate the matter,[10] and the abstract and more powerful tools of functional
analysis can be used instead.

Empty matrices
An empty matrix is a matrix in which the number of rows or columns (or both) is zero.[11][12] Empty matrices help
dealing with maps involving the zero vector space. For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix,
then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a
0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating
and computing with them. The determinant of the 0-by-0 matrix is 1 as follows from regarding the empty product
occurring in the Leibniz formula for the determinant as 1. This value is also consistent with the fact that the identity
map from any finite dimensional space to itself has determinant 1, a fact that is often used as a part of the
characterization of determinants.
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Applications
There are numerous applications of matrices, both in mathematics and other sciences. Some of them merely take
advantage of the compact representation of a set of numbers in a matrix. For example, in game theory and
economics, the payoff matrix encodes the payoff for two players, depending on which out of a given (finite) set of
alternatives the players choose. Text mining and automated thesaurus compilation makes use of document-term
matrices such as tf-idf to track frequencies of certain words in several documents.
Complex numbers can be represented by particular real 2-by-2 matrices via

under which addition and multiplication of complex numbers and matrices correspond to each other. For example,
2-by-2 rotation matrices represent the multiplication with some complex number of absolute value 1, as above. A
similar interpretation is possible for quaternions, and also for Clifford algebras in general.
Early encryption techniques such as the Hill cipher also used matrices. However, due to the linear nature of matrices,
these codes are comparatively easy to break. Computer graphics uses matrices both to represent objects and to
calculate transformations of objects using affine rotation matrices to accomplish tasks such as projecting a
three-dimensional object onto a two-dimensional screen, corresponding to a theoretical camera observation. Matrices
over a polynomial ring are important in the study of control theory.
Chemistry makes use of matrices in various ways, particularly since the use of quantum theory to discuss molecular
bonding and spectroscopy. Examples are the overlap matrix and the Fock matrix used in solving the Roothaan
equations to obtain the molecular orbitals of the Hartree–Fock method.

Graph theory

An undirected graph with adjacency

matrix 

The adjacency matrix of a finite graph is a basic notion of graph theory. It
saves which vertices of the graph are connected by an edge. Matrices
containing just two different values (1 and 0 meaning for example "yes" and
"no", respectively) are called logical matrices. The distance (or cost) matrix
contains information about distances of the edges. These concepts can be
applied to websites connected hyperlinks or cities connected by roads etc., in
which case (unless the road network is extremely dense) the matrices tend to
be sparse, i.e., contain few nonzero entries. Therefore, specifically tailored
matrix algorithms can be used in network theory.

Analysis and geometry

The Hessian matrix of a differentiable function ƒ: Rn → R consists of the
second derivatives of ƒ with respect to the several coordinate directions, i.e.
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At the saddle point (x = 0, y = 0) (red) of the
function f(x,−y) = x2 − y2, the Hessian matrix

is indefinite.

It encodes information about the local growth behaviour of the
function: given a critical point x = (x1, ..., xn), i.e., a point where the
first partial derivatives of ƒ vanish, the function has a local
minimum if the Hessian matrix is positive definite. Quadratic
programming can be used to find global minima or maxima of
quadratic functions closely related to the ones attached to matrices (see
above).
Another matrix frequently used in geometrical situations is the Jacobi
matrix of a differentiable map f: Rn → Rm. If f1, ..., fm denote the
components of f, then the Jacobi matrix is defined as

If n > m, and if the rank of the Jacobi matrix attains its maximal value
m, f is locally invertible at that point, by the implicit function theorem.[13]

Partial differential equations can be classified by considering the matrix of coefficients of the highest-order
differential operators of the equation. For elliptic partial differential equations this matrix is positive definite, which
has decisive influence on the set of possible solutions of the equation in question.

The finite element method is an important numerical method to solve partial differential equations, widely applied in
simulating complex physical systems. It attempts to approximate the solution to some equation by piecewise linear
functions, where the pieces are chosen with respect to a sufficiently fine grid, which in turn can be recast as a matrix
equation.[14]

Probability theory and statistics

Two different Markov chains. The chart depicts the number of particles (of a
total of 1000) in state "2". Both limiting values can be determined from the

transition matrices, which are given by (red) and 

(black).

Stochastic matrices are square matrices whose
rows are probability vectors, i.e., whose entries
are non-negative and sum up to one. Stochastic
matrices are used to define Markov chains with
finitely many states. A row of the stochastic
matrix gives the probability distribution for the
next position of some particle currently in the
state that corresponds to the row. Properties of
the Markov chain like absorbing states, i.e.,
states that any particle attains eventually, can be
read off the eigenvectors of the transition
matrices.

Statistics also makes use of matrices in many
different forms. Descriptive statistics is
concerned with describing data sets, which can
often be represented as data matrices, which may
then be subjected to dimensionality reduction
techniques. The covariance matrix encodes the
mutual variance of several random variables. Another technique using matrices are linear least squares, a method
that approximates a finite set of pairs (x1, y1), (x2, y2), ..., (xN, yN), by a linear function

yi ≈ axi + b, i = 1, ..., N
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which can be formulated in terms of matrices, related to the singular value decomposition of matrices.
Random matrices are matrices whose entries are random numbers, subject to suitable probability distributions, such
as matrix normal distribution. Beyond probability theory, they are applied in domains ranging from number theory to
physics.

Symmetries and transformations in physics
Linear transformations and the associated symmetries play a key role in modern physics. For example, elementary
particles in quantum field theory are classified as representations of the Lorentz group of special relativity and, more
specifically, by their behavior under the spin group. Concrete representations involving the Pauli matrices and more
general gamma matrices are an integral part of the physical description of fermions, which behave as spinors. For the
three lightest quarks, there is a group-theoretical representation involving the special unitary group SU(3); for their
calculations, physicists use a convenient matrix representation known as the Gell-Mann matrices, which are also
used for the SU(3) gauge group that forms the basis of the modern description of strong nuclear interactions,
quantum chromodynamics. The Cabibbo–Kobayashi–Maskawa matrix, in turn, expresses the fact that the basic
quark states that are important for weak interactions are not the same as, but linearly related to the basic quark states
that define particles with specific and distinct masses.[15]

Linear combinations of quantum states
The first model of quantum mechanics (Heisenberg, 1925) represented the theory's operators by infinite-dimensional
matrices acting on quantum states. This is also referred to as matrix mechanics. One particular example is the density
matrix that characterizes the "mixed" state of a quantum system as a linear combination of elementary, "pure"
eigenstates.
Another matrix serves as a key tool for describing the scattering experiments that form the cornerstone of
experimental particle physics: Collision reactions such as occur in particle accelerators, where non-interacting
particles head towards each other and collide in a small interaction zone, with a new set of non-interacting particles
as the result, can be described as the scalar product of outgoing particle states and a linear combination of ingoing
particle states. The linear combination is given by a matrix known as the S-matrix, which encodes all information
about the possible interactions between particles.

Normal modes
A general application of matrices in physics is to the description of linearly coupled harmonic systems. The
equations of motion of such systems can be described in matrix form, with a mass matrix multiplying a generalized
velocity to give the kinetic term, and a force matrix multiplying a displacement vector to characterize the
interactions. The best way to obtain solutions is to determine the system's eigenvectors, its normal modes, by
diagonalizing the matrix equation. Techniques like this are crucial when it comes to the internal dynamics of
molecules: the internal vibrations of systems consisting of mutually bound component atoms. They are also needed
for describing mechanical vibrations, and oscillations in electrical circuits.

Geometrical optics
Geometrical optics provides further matrix applications. In this approximative theory, the wave nature of light is 
neglected. The result is a model in which light rays are indeed geometrical rays. If the deflection of light rays by 
optical elements is small, the action of a lens or reflective element on a given light ray can be expressed as 
multiplication of a two-component vector with a two-by-two matrix called ray transfer matrix: the vector's 
components are the light ray's slope and its distance from the optical axis, while the matrix encodes the properties of 
the optical element. Actually, there are two kinds of matrices, viz. a refraction matrix describing the refraction at a 
lens surface, and a translation matrix, describing the translation of the plane of reference to the next refracting
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surface, where another refraction matrix applies. The optical system, consisting of a combination of lenses and/or
reflective elements, is simply described by the matrix resulting from the product of the components' matrices.

Electronics
Traditional mesh analysis in electronics leads to a system of linear equations that can be described with a matrix.
The behaviour of many electronic components can be described using matrices. Let A be a 2-dimensional vector with
the component's input voltage v1 and input current i1 as its elements, and let B be a 2-dimensional vector with the
component's output voltage v2 and output current i2 as its elements. Then the behaviour of the electronic component
can be described by B = H · A, where H is a 2 x 2 matrix containing one impedance element (h12), one admittance
element (h21) and two dimensionless elements (h11 and h22). Calculating a circuit now reduces to multiplying
matrices.

History
Matrices have a long history of application in solving linear equations but they were known as arrays until the 1800s.
The Chinese text The Nine Chapters on the Mathematical Art is the first example of the use of array methods to
solve simultaneous equations,[16] including the concept of determinants. In 1545 Italian mathematician Girolamo
Cardano brought the method to Europe when he published Ars Magna.[17] The Japanese mathematician Seki used the
same array methods to solve simultaneous equations in 1683. The Dutch Mathematician Jan de Witt represented
transformations using arrays in his 1659 book Elements of Curves (1659).[18] Between 1700 and 1710 Gottfired
Wilhelm Leibniz publicized the use of arrays for recording information or solutions and experimented with over 50
different systems of arrays. Cramer presented his rule in 1750.
The term "matrix" (Latin for "womb", derived from mater—mother) was coined by James Joseph Sylvester in
1850,[19] who understood a matrix as an object giving rise to a number of determinants today called minors, that is to
say, determinants of smaller matrices that derive from the original one by removing columns and rows. In an 1851
paper, Sylvester explains:

I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of
determinants may be engendered as from the womb of a common parent.[20]

Arthur Cayley published a treatise on geometric transformations using matrices that were not rotated versions of the
coefficients being investigated as had previously been done. Instead he defined operations such as addition,
subtraction, multiplication, and division as transformations of those matrices and showed the associative and
distributive properties held true. Cayley investigated and demonstrated the non-commutative property of matrix
multiplication as well as the commutative property of matrix addition. Early matrix theory had limited the use of
arrays almost exclusively to determinants and Arthur Caley's abstract matrix operations were revolutionary. He was
instrumental in proposing a matrix concept independent of equation systems. In 1858 Cayley published his Memoir
on the theory of matrices in which he proposed and demonstrated the Cayley-Hamilton theorem.
An English mathematician named Cullis was the first to use modern bracket notation for matrices in 1913 and he
simultaneously demonstrated the first significant use the notation A = [ai,j] to represent a matrix where ai,j refers to
the ith row and the jth column.
The study of determinants sprang from several sources. Number-theoretical problems led Gauss to relate coefficients
of quadratic forms, i.e., expressions such as x2 + xy − 2y2, and linear maps in three dimensions to matrices.
Eisenstein further developed these notions, including the remark that, in modern parlance, matrix products are
non-commutative. Cauchy was the first to prove general statements about determinants, using as definition of the
determinant of a matrix A = [ai,j] the following: replace the powers aj

k by ajk in the polynomial

,
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where Π denotes the product of the indicated terms. He also showed, in 1829, that the eigenvalues of symmetric
matrices are real. Jacobi studied "functional determinants"—later called Jacobi determinants by Sylvester—which
can be used to describe geometric transformations at a local (or infinitesimal) level, see above; Kronecker's
Vorlesungen über die Theorie der Determinanten and Weierstrass' Zur Determinantentheorie, both published in
1903, first treated determinants axiomatically, as opposed to previous more concrete approaches such as the
mentioned formula of Cauchy. At that point, determinants were firmly established.
Many theorems were first established for small matrices only, for example the Cayley–Hamilton theorem was
proved for 2×2 matrices by Cayley in the aforementioned memoir, and by Hamilton for 4×4 matrices. Frobenius,
working on bilinear forms, generalized the theorem to all dimensions (1898). Also at the end of the 19th century the
Gauss–Jordan elimination (generalizing a special case now known as Gauss elimination) was established by Jordan.
In the early 20th century, matrices attained a central role in linear algebra. partially due to their use in classification
of the hypercomplex number systems of the previous century.
The inception of matrix mechanics by Heisenberg, Born and Jordan led to studying matrices with infinitely many
rows and columns. Later, von Neumann carried out the mathematical formulation of quantum mechanics, by further
developing functional analytic notions such as linear operators on Hilbert spaces, which, very roughly speaking,
correspond to Euclidean space, but with an infinity of independent directions.

Other historical usages of the word “matrix” in mathematics
The word has been used in unusual ways by at least two authors of historical importance.
Bertrand Russell and Alfred North Whitehead in their Principia Mathematica (1910–1913) use the word “matrix” in
the context of their Axiom of reducibility. They proposed this axiom as a means to reduce any function to one of
lower type, successively, so that at the “bottom” (0 order) the function is identical to its extension:

“Let us give the name of matrix to any function, of however many variables, which does not involve any
apparent variables. Then any possible function other than a matrix is derived from a matrix by means of
generalization, i.e., by considering the proposition which asserts that the function in question is true with all
possible values or with some value of one of the arguments, the other argument or arguments remaining
undetermined”.[21]

For example a function Φ(x, y) of two variables x and y can be reduced to a collection of functions of a single
variable, e.g., y, by “considering” the function for all possible values of “individuals” ai substituted in place of
variable x. And then the resulting collection of functions of the single variable y, i.e., ∀ai: Φ(ai, y), can be reduced to
a “matrix” of values by “considering” the function for all possible values of “individuals” bi substituted in place of
variable y:

∀bj∀ai: Φ(ai, bj).

Alfred Tarski in his 1946 Introduction to Logic used the word “matrix” synonymously with the notion of truth table
as used in mathematical logic.[22]

https://en.wikipedia.org/w/index.php?title=Multiplication
https://en.wikipedia.org/w/index.php?title=Eigenvalue
https://en.wikipedia.org/w/index.php?title=Carl_Gustav_Jakob_Jacobi
https://en.wikipedia.org/w/index.php?title=Jacobian_matrix_and_determinant
https://en.wikipedia.org/w/index.php?title=Infinitesimal
https://en.wikipedia.org/w/index.php?title=Leopold_Kronecker
https://en.wikipedia.org/w/index.php?title=Karl_Weierstrass
https://en.wikipedia.org/w/index.php?title=Axiom
https://en.wikipedia.org/w/index.php?title=Cayley%E2%80%93Hamilton_theorem
https://en.wikipedia.org/w/index.php?title=William_Rowan_Hamilton
https://en.wikipedia.org/w/index.php?title=Georg_Frobenius
https://en.wikipedia.org/w/index.php?title=Bilinear_form
https://en.wikipedia.org/w/index.php?title=Gauss%E2%80%93Jordan_elimination
https://en.wikipedia.org/w/index.php?title=Gauss_elimination
https://en.wikipedia.org/w/index.php?title=Wilhelm_Jordan_%28geodesist%29
https://en.wikipedia.org/w/index.php?title=Hypercomplex_number
https://en.wikipedia.org/w/index.php?title=Matrix_mechanics
https://en.wikipedia.org/w/index.php?title=Werner_Heisenberg
https://en.wikipedia.org/w/index.php?title=Max_Born
https://en.wikipedia.org/w/index.php?title=Pascual_Jordan
https://en.wikipedia.org/w/index.php?title=John_von_Neumann
https://en.wikipedia.org/w/index.php?title=Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/w/index.php?title=Functional_analysis
https://en.wikipedia.org/w/index.php?title=Linear_operator
https://en.wikipedia.org/w/index.php?title=Hilbert_space
https://en.wikipedia.org/w/index.php?title=Euclidean_space
https://en.wikipedia.org/w/index.php?title=Hamel_dimension
https://en.wikipedia.org/w/index.php?title=Bertrand_Russell
https://en.wikipedia.org/w/index.php?title=Alfred_North_Whitehead
https://en.wikipedia.org/w/index.php?title=Axiom_of_reducibility
https://en.wikipedia.org/w/index.php?title=Extension_%28predicate_logic%29
https://en.wikipedia.org/w/index.php?title=Apparent_variable
https://en.wikipedia.org/w/index.php?title=Alfred_Tarski
https://en.wikipedia.org/w/index.php?title=Truth_table


Matrix (mathematics) 243

Notes
[1] equivalently, table
[2] K. Bryan and T. Leise. The $25,000,000,000 eigenvector: The linear algebra behind Google. SIAM Review, 48(3):569–581, 2006.
[3] http:/ / ed. ted. com/ lessons/ how-to-organize-add-and-multiply-matrices-bill-shillito
[4] Eigen means "own" in German and in Dutch.
[5] For example, Mathematica, see
[6][6] See any standard reference in group.
[7] Additionally, the group is required to be closed in the general linear group.
[8] See any reference in representation theory or group representation.
[9][9] See the item "Matrix" in
[10][10] "Not much of matrix theory carries over to infinite-dimensional spaces, and what does is not so useful, but it sometimes helps."
[11] "Empty Matrix: A matrix is empty if either its row or column dimension is zero", Glossary (http:/ / www. omatrix. com/ manual/ glossary.

htm), O-Matrix v6 User Guide
[12] "A matrix having at least one dimension equal to zero is called an empty matrix", MATLAB Data Structures (http:/ / www. system. nada.

kth. se/ unix/ software/ matlab/ Release_14. 1/ techdoc/ matlab_prog/ ch_dat29. html)
[13][13] . For a more advanced, and more general statement see
[14] . See also stiffness method.
[15][15] see
[16][16] cited by
[17][17] Discrete Mathematics 4th Ed. Dossey, Otto, Spense, Vanden Eynden, Published by Addison Wesley, October 10, 2001 ISBN

978-0321079121 | p.564-565
[18][18] Discrete Mathematics 4th Ed. Dossey, Otto, Spense, Vanden Eynden, Published by Addison Wesley, October 10, 2001 ISBN

978-0321079121 | p.564
[19] Although many sources state that J. J. Sylvester coined the mathematical term "matrix" in 1848, Sylvester published nothing in 1848. (For

proof that Sylvester published nothing in 1848, see: J. J. Sylvester with H. F. Baker, ed., The Collected Mathematical Papers of James Joseph
Sylvester (Cambridge, England: Cambridge University Press, 1904), vol. 1. (http:/ / books. google. com/ books?id=r-kZAQAAIAAJ&
pg=PR6#v=onepage& q& f=false)) His earliest use of the term "matrix" occurs in 1850 in: J. J. Sylvester (1850) "Additions to the articles in
the September number of this journal, "On a new class of theorems," and on Pascal's theorem," The London, Edinburgh and Dublin
Philosophical Magazine and Journal of Science, 37 : 363-370. From page 369 (http:/ / books. google. com/ books?id=CBhDAQAAIAAJ&
pg=PA369#v=onepage& q& f=false): "For this purpose we must commence, not with a square, but with an oblong arrangement of terms
consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may
form various systems of determinants … "

[20] The Collected Mathematical Papers of James Joseph Sylvester: 1837–1853, Paper 37 (http:/ / books. google. com/
books?id=5GQPlxWrDiEC& pg=PA247& dq=sylvester+ matrix+ womb& hl=en& ei=uJakTaytCoOv8gPa5cG5Dw& sa=X&
oi=book_result& ct=result& resnum=8& ved=0CE8Q6AEwBw#v=onepage& q& f=false), p. 247

[21] Whitehead, Alfred North; and Russell, Bertrand (1913) Principia Mathematica to *56, Cambridge at the University Press, Cambridge UK
(republished 1962) cf page 162ff.

[22] Tarski, Alfred; (1946) Introduction to Logic and the Methodology of Deductive Sciences, Dover Publications, Inc, New York NY, ISBN
0-486-28462-X.
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Matrix addition
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries
together. However, there are other operations which could also be considered as a kind of addition for matrices, the
direct sum and the Kronecker sum.

Entrywise sum
The usual matrix addition is defined for two matrices of the same dimensions. The sum of two m × n (pronounced
"m by n") matrices A and B, denoted by A + B, is again an m × n matrix computed by adding corresponding
elements:[1]

For example:

We can also subtract one matrix from another, as long as they have the same dimensions. A − B is computed by
subtracting corresponding elements of A and B, and has the same dimensions as A and B. For example:
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Direct sum
Another operation, which is used less often, is the direct sum (denoted by ⊕). Note the Kronecker sum is also
denoted ⊕; the context should make the usage clear. The direct sum of any pair of matrices A of size m × n and B of
size p × q is a matrix of size (m + p) × (n + q) defined as [1]

For instance,

The direct sum of matrices is a special type of block matrix, in particular the direct sum of square matrices is a block
diagonal matrix.
The adjacency matrix of the union of disjoint graphs or multigraphs is the direct sum of their adjacency matrices.
Any element in the direct sum of two vector spaces of matrices can be represented as a direct sum of two matrices.
In general, the direct sum of n matrices is:[1]

where the zeros are actually blocks of zeros, i.e. zero matricies.
NB: Sometimes in this context, boldtype for matrices is dropped, matricies are written in italic.

Kronecker sum
The Kronecker sum is different from the direct sum but is also denoted by ⊕. It is defined using the Kronecker
product ⊗ and normal matrix addition. If A is n-by-n, B is m-by-m and denotes the k-by-k identity matrix then
the Kronecker sum is defined by:

Notes
[1][1] Lipschutz Lipson.
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External links
• Direct sum of matrices (http:/ / planetmath. org/ encyclopedia/ DirectSumOfMatrices. html) at PlanetMath
• 4x4 Matrix Addition and Subtraction (http:/ / ncalculators. com/ matrix/
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Matrix multiplication
In mathematics, matrix multiplication is a binary operation that takes a pair of matrices, and produces another
matrix. Numbers such as the real or complex numbers can be multiplied according to elementary arithmetic. On the
other hand, matrices are arrays of numbers, so there is no unique way to define "the" multiplication of matrices. As
such, in general the term "matrix multiplication" refers to a number of different ways to multiply matrices. The key
features of any matrix multiplication include: the number of rows and columns the original matrices have (called the
"size", "order" or "dimension"), and specifying how the entries of the matrices generate the new matrix.
Like vectors, matrices of any size can be multiplied by scalars, which amounts to multiplying every entry of the
matrix by the same number. Similar to the entrywise definition of adding or subtracting matrices, multiplication of
two matrices of the same size can be defined by multiplying the corresponding entries, and this is known as the
Hadamard product. Another definition is the Kronecker product of two matrices, to obtain a block matrix.
One can form many other definitions. However, the most useful definition can be motivated by linear equations and
linear transformations on vectors, which have numerous applications in applied mathematics, physics, and
engineering. This definition is often called the matrix product.[1][2] In words, if A is an n × m matrix and B is a m ×
p matrix, their matrix product AB is an n × p matrix, in which the m entries across the rows of A are multiplied with
the m entries down the columns of B (the precise definition is below).
This definition is not commutative, although it still retains the associative property and is distributive over entrywise
addition of matrices. The identity element of the matrix product is the identity matrix (analogous to multiplying
numbers by 1), and a square matrix may have an inverse matrix (analogous to the multiplicative inverse of a
number). A consequence of the matrix product is determinant multiplicativity. The matrix product is an important
operation in linear transformations, matrix groups, and the theory of group representations and irreps. For large
matrices and/or products of more than two matrices, this matrix product can be very time consuming to calculate, so
more efficient algorithms to compute the matrix product than the mathematical definition have been developed.
This article will use the following notational conventions: matrices are represented by capital letters in bold, e.g. A,
vectors in lowercase bold, e.g. a, and entries of vectors and matrices are italic (since they are scalars), e.g. A and a.
Index notation is often the clearest way to express definitions, and will be used as standard in the literature. The i, j
entry of matrix A is indicated by (A)ij or Aij, whereas a numerical label (not matrix entries) on a collection of
matrices is subscripted only, e.g. A1, A2, etc.
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Scalar multiplication
The simplest form of multiplication associated with matrices is scalar multiplication.
The left scalar multiplication of a matrix A with a scalar λ gives another matrix λA of the same size as A. The
entries of λA are defined by

explicitly:

Similarly, the right scalar multiplication of a matrix A with a scalar λ is defined to be

explicitly:

When the underlying ring is commutative, for example, the real or complex number field, these two multiplications
are the same, and are simply called scalar multiplication. However, for matrices over a more general ring that are not
commutative, such as the quaternions, they may not be equal.
For a real scalar and matrix:

For quaternion scalars and matrices:

where i, j, k are the quaternion units. The non-commutativity of quaternion multiplication prevents the transition of
changing ij = +k to ji = −k.
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Matrix product (two matrices)
Assume two matrices are to be multiplied (the generalization to any number is discussed below).

General definition of the matrix product

Arithmetic process of multiplying numbers (solid lines) in row i in matrix A and
column j in matrix B, then adding the terms (dashed lines) to obtain entry ij in the

final matrix.

If A is an n × m matrix and B is an m × p
matrix,

the matrix product AB (denoted without multiplication signs or dots) is defined to be the n × p matrix[3][4]

where each i, j entry is given by multiplying the entries Aik (across row i of A) by the entries Bkj (down column j of
B), for k = 1, 2, ..., m, and summing the results over k:

Thus the product AB is defined only if the number of columns in A is equal to the number of rows in B, in this case
m. Each entry may be computed one at a time. Sometimes, the summation convention is used as it is understood to
sum over the repeated index k. To prevent any ambiguity, this convention will not be used in the article.
Usually the entries are numbers or expressions, but can even be matrices themselves (see block matrix). The matrix
product can still be calculated exactly the same way. See below for details on how the matrix product can be
calculated in terms of blocks taking the forms of rows and columns.
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Illustration

The figure to the right illustrates diagrammatically the product of two
matrices A and B, showing how each intersection in the product matrix
corresponds to a row of A and a column of B.

The values at the intersections marked with circles are:

Examples of matrix products
Row vector and column vector
If

their matrix products are:

and

Note AB and BA are two very different matrices: the first is a 1 × 1 matrix while the second is a 2 × 2 matrix. Such
expressions occur for real-valued Euclidean vectors in Cartesian coordinates, displayed as row and column matrices,
in which case AB is the matrix form of their inner product, while BA the matrix form of their dyadic or tensor
product.
Square matrix and column vector
If

their matrix product is:
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however BA is not defined.
The product of a square matrix multiplied by a column matrix arises naturally in linear algebra; for solving linear
equations and representing linear transformations. By choosing a, b, c, d in A appropriately, A can represent a
variety of transformations such as rotations, scaling and reflections, shears, of a geometric shape in space.
Square matrices
If

their matrix products are:

and

In this case, both products AB and BA are defined, and the entries show that AB and BA are not equal in general.
Multiplying square matrices which represent linear transformations corresponds to the composite transformation (see
below for details).
Row vector, square matrix, and column vector
If

their matrix product is:

however CBA is not defined. Note that A(BC) = (AB)C, this is one of many general properties listed below.
Expressions of the form ABC occur when calculating the inner product of two vectors displayed as row and column
vectors in an arbitrary coordinate system, and the metric tensor in these coordinates written as the square matrix.

Properties of the matrix product (two matrices)
Analogous to numbers (elements of a field), matrices satisfy the following general properties, although there is one
subtlety, due to the nature of matrix multiplication.

All matrices

1. Not commutative:
In general:

because AB and BA may not be simultaneously defined, and even if they are they may still not be equal. This is 
contrary to ordinary multiplication of numbers. To specify the ordering of matrix multiplication in words; 
"pre-multiply (or left multiply) A by B" means BA, while "post-multiply (or right multiply) A by C" means AC. 
As long as the entries of the matrix come from a ring that has an identity, and n > 1 there is a pair of n × n
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noncommuting matrices over the ring. A notable exception is that the identity matrix (or any scalar multiple of it)
commutes with every square matrix. 
In index notation:

2. Distributive over matrix addition:
Left distributivity:

Right distributivity:

In index notation, these are respectively:

3. Scalar multiplication is compatible with matrix multiplication:

and 
where λ is a scalar. If the entries of the matrix are real or complex numbers (or from any other commutative ring),
then all four quantities are equal. More generally, all four are equal if λ belongs to the center of the ring of entries
of the matrix, because in this case λX = Xλ for all matrices X.
In index notation, these are respectively:

4. Transpose:

where T denotes the transpose, the interchange of row i with column i in a matrix. This identity holds for any
matrices over a commutative ring, but not for all rings in general. Note that 'A and B are reversed.
In index notation:

5. Complex conjugate: If A and B have complex entries, then

where * denotes the complex conjugate of a matrix.
In index notation:

6. Conjugate transpose: If A and B have complex entries, then

where † denotes the Conjugate transpose of a matrix (complex conjugate and transposed).
In index notation:

7. Traces: The trace of a product AB is independent of the order of A and B:
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In index notation:

Square matrices only

1. Identity element: If A is a square matrix, then

where I is the identity matrix of the same order.
2. Inverse matrix: If A is a square matrix, there may be an inverse matrix A−1 of A such that

If this property holds then A is an invertible matrix, if not A is a singular matrix. Moreover,

3. Determinants: The determinant of a product AB is the product of the determinants of square matrices A and B
(not defined when the underlying ring is not commutative):

Since det(A) and det(B) are just numbers and so commute, det(AB) = det(A)det(B) = det(B)det(A) = det(BA),
even when AB ≠ BA.

Matrix product (any number)
Matrix multiplication can be extended to the case of more than two matrices, provided that for each sequential pair,
their dimensions match.
The product of n matrices A1, A2, ..., An with sizes s0 × s1, s1 × s2, ..., sn − 1 × sn (where s0, s1, s2, ..., sn are all simply
positive integers and the subscripts are labels corresponding to the matrices, nothing more), is the s0 × sn matrix:

In index notation:

Properties of the matrix product (any number)
The same properties will hold, as long as the ordering of matrices is not changed. Some of the previous properties for
more than two matrices generalize as follows.
1. Associative:

The matrix product is associative. If three matrices A, B, and C are respectively m × p, p × q, and q × r matrices,
then there are two ways of grouping them without changing their order, and

is an m × r matrix.
If four matrices A, B, C, and D are respectively m × p, p × q, q × r, and r × s matrices, then there are five ways of
grouping them without changing their order, and

is an m × s matrix.
In general, the number of possible ways of grouping n matrices for multiplication is equal to the (n − 1)th Catalan
number
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2. Trace: The trace of a product of n matrices A1, A2, ..., An is invariant under cyclic permutations of the matrices
in the product:

3. Determinant: For square matrices only, the determinant of a product is the product of determinants:

Examples of chain multiplication
Similarity transformations involving similar matrices are matrix products of the three square matrices, in the form:

where P is the similarity matrix and A and B are said to be similar if this relation holds. This product appears
frequently in linear algebra and applications, such as diagonalizing square matrices and the equivalence between
different matrix representations of the same linear operator.

Operations derived from the matrix product
More operations on square matrices can be defined using the matrix product, such as powers and nth roots by
repeated matrix products, the matrix exponential can be defined by a power series, the matrix logarithm is the
inverse of matrix exponentiation, and so on.

Powers of matrices
Square matrices can be multiplied by themselves repeatedly in the same way as ordinary numbers, because they
always have the same number of rows and columns. This repeated multiplication can be described as a power of the
matrix, a special case of the ordinary matrix product. On the contrary, rectangular matrices do not have the same
number of rows and columns so they can never be raised to a power. An n × n matrix A raised to a positive integer k
is defined as

and the following identities hold, where λ is a scalar:
1.1. Zero power:

where I is the identity matrix. This is parallel to the zeroth power of any number which equals unity.
2.2. Scalar multiplication:

3.3. Determinant:

The naive computation of matrix powers is to multiply k times the matrix A to the result, starting with the identity
matrix just like the scalar case. This can be improved using exponentiation by squaring, a method commonly used
for scalars. For diagonalizable matrices, an even better method is to use the eigenvalue decomposition of A. Another
method based on the Cayley–Hamilton theorem finds an identity using the matrices' characteristic polynomial,
producing a more effective equation for Ak in which a scalar is raised to the required power, rather than an entire
matrix.
A special case is the power of a diagonal matrix. Since the product of diagonal matrices amounts to simply
multiplying corresponding diagonal elements together, the power k of a diagonal matrix A will have entries raised to
the power. Explicitly;
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meaning it is easy to raise a diagonal matrix to a power. When raising an arbitrary matrix (not necessarily a diagonal
matrix) to a power, it is often helpful to exploit this property by diagonalizing the matrix first.

Applications of the matrix product

Linear transformations
Matrices offer a concise way of representing linear transformations between vector spaces, and matrix multiplication
corresponds to the composition of linear transformations. The matrix product of two matrices can be defined when
their entries belong to the same ring, and hence can be added and multiplied.
Let U, V, and W be vector spaces over the same field with given bases, S: V → W and T: U → V be linear
transformations and ST: U → W be their composition.
Suppose that A, B, and C are the matrices representing the transformations S, T, and ST with respect to the given
bases.
Then AB = C, that is, the matrix of the composition (or the product) of linear transformations is the product of their
matrices with respect to the given bases.

Linear systems of equations
A system of linear equations can be solved by collecting the coefficients of the equations into a square matrix, then
inverting the matrix equation.
A similar procedure can be used to solve a system of linear differential equations, see also phase plane.

The inner and outer products
Given two column vectors a and b, the Euclidean inner product and outer product are the simplest special cases of
the matrix product, by transposing the column vectors into row vectors.[5]

Inner product
The inner product of two vectors in matrix form is equivalent to a column vector multiplied on the left by a row
vector:

The matrix product itself can be expressed in terms of inner product. Suppose that the first n × m matrix A is
decomposed into its row vectors ai, and the second m × p matrix B into its column vectors bi:

where
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Then:

It is also possible to express a matrix product in terms of concatenations of products of matrices and row or column
vectors:

These decompositions are particularly useful for matrices that are envisioned as concatenations of particular types of
row vectors or column vectors, e.g. orthogonal matrices (whose rows and columns are unit vectors orthogonal to
each other) and Markov matrices (whose rows or columns sum to 1).

Outer product
The outer product (also known as the dyadic product or tensor product) of two vectors in matrix form is
equivalent to a row vector multiplied on the left by a column vector:

An alternative method is to express the matrix product in terms of the outer product. The decomposition is done the
other way around, the first matrix A is decomposed into column vectors ai and the second matrix B into row vectors
bi:

where this time

This method emphasizes the effect of individual column/row pairs on the result, which is a useful point of view with
e.g. covariance matrices, where each such pair corresponds to the effect of a single sample point.

https://en.wikipedia.org/w/index.php?title=Concatenation_%28mathematics%29
https://en.wikipedia.org/w/index.php?title=Row_vector
https://en.wikipedia.org/w/index.php?title=Column_vector
https://en.wikipedia.org/w/index.php?title=Orthogonal_matrices
https://en.wikipedia.org/w/index.php?title=Markov_matrices
https://en.wikipedia.org/w/index.php?title=Outer_product
https://en.wikipedia.org/w/index.php?title=Dyadic_product
https://en.wikipedia.org/w/index.php?title=Tensor_product
https://en.wikipedia.org/w/index.php?title=Covariance_matrix


Matrix multiplication 259

Algorithms for efficient matrix multiplication

List of unsolved problems in computer science

What is the fastest algorithm for matrix multiplication?

The bound on ω over time.

The running time of square matrix
multiplication, if carried out naïvely, is
O(n3). The running time for
multiplying rectangular matrices (one
m × p-matrix with one p × n-matrix) is
O(mnp), however, more efficient
algorithms exist, such as Strassen's
algorithm, devised by Volker Strassen
in 1969 and often referred to as "fast
matrix multiplication". It is based on a
way of multiplying two 2 × 2-matrices
which requires only 7 multiplications
(instead of the usual 8), at the expense
of several additional addition and
subtraction operations. Applying this
recursively gives an algorithm with a
multiplicative cost of

. Strassen's
algorithm is more complex, and the
numerical stability is reduced
compared to the naïve algorithm.
Nevertheless, it appears in several libraries, such as BLAS, where it is significantly more efficient for matrices with
dimensions n > 100,[6] and is very useful for large matrices over exact domains such as finite fields, where numerical
stability is not an issue.

The current O(nk) algorithm with the lowest known exponent k is a generalization of the Coppersmith–Winograd
algorithm that has an asymptotic complexity of O(n2.3729) thanks to Vassilevska Williams.[7] This algorithm, and the
Coppersmith-Winograd algorithm on which it is based, are similar to Strassen's algorithm: a way is devised for
multiplying two k × k-matrices with fewer than k3 multiplications, and this technique is applied recursively.
However, the constant coefficient hidden by the Big O notation is so large that these algorithms are only worthwhile
for matrices that are too large to handle on present-day computers.
Since any algorithm for multiplying two n × n-matrices has to process all 2 × n2-entries, there is an asymptotic lower
bound of Ω(n2) operations. Raz (2002) proves a lower bound of Ω(n2 log(n)) for bounded coefficient arithmetic
circuits over the real or complex numbers.
Cohn et al. (2003, 2005) put methods such as the Strassen and Coppersmith–Winograd algorithms in an entirely
different group-theoretic context, by utilising triples of subsets of finite groups which satisfy a disjointness property
called the triple product property (TPP). They show that if families of wreath products of Abelian groups with
symmetric groups realise families of subset triples with a simultaneous version of the TPP, then there are matrix
multiplication algorithms with essentially quadratic complexity. Most researchers believe that this is indeed the
case.[8] However, Alon, Shpilka and Umans have recently shown that some of these conjectures implying fast matrix
multiplication are incompatible with another plausible conjecture, the sunflower conjecture.[9]
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Because of the nature of matrix operations and the layout of matrices in memory, it is typically possible to gain
substantial performance gains through use of parallelization and vectorization. It should therefore be noted that some
lower time-complexity algorithms on paper may have indirect time complexity costs on real machines.
Freivalds' algorithm is a simple Monte Carlo algorithm that given matrices A, B, C verifies in Θ(n2) time if AB = C.

Block matrix multiplication. In the 2D algorithm,
each processor is responsible for one submatrix

of C. In the 3D algorithm, every pair of
submatrices from A and B that is multiplied is

assigned to one processor.

Communication-avoiding and distributed algorithms

On modern architectures with hierarchical memory, the cost of loading
and storing input matrix elements tends to dominate the cost of
arithmetic. On a single machine this is the amount of data transferred
between RAM and cache, while on a distributed memory multi-node
machine it is the amount transferred between nodes; in either case it is
called the communication bandwidth. The naïve algorithm using three
nested loops uses Ω(n3) communication bandwidth.

Cannon's algorithm, also known as the 2D algorithm, partitions each
input matrix into a block matrix whose elements are submatrices of
size √M/3 by √M/3, where M is the size of fast memory.[10] The naïve
algorithm is then used over the block matrices, computing products of
submatrices entirely in fast memory. This reduces communication
bandwidth to O(n3/√M), which is asymptotically optimal (for
algorithms performing Ω(n3) computation).

In a distributed setting with p processors arranged in a √p by √p 2D
mesh, one submatrix of the result can be assigned to each processor,
and the product can be computed with each processor transmitting
O(n2/√p) words, which is asymptotically optimal assuming that each
node stores the minimum O(n2/p) elements. This can be improved by
the 3D algorithm, which arranges the processors in a 3D cube mesh,
assigning every product of two input submatrices to a single processor.
The result submatrices are then generated by performing a reduction
over each row. This algorithm transmits O(n2/p2/3) words per
processor, which is asymptotically optimal. However, this requires replicating each input matrix element p1/3 times,
and so requires a factor of p1/3 more memory than is needed to store the inputs. This algorithm can be combined with
Strassen to further reduce runtime. "2.5D" algorithms provide a continuous tradeoff between memory usage and
communication bandwidth.

Other forms of multiplication
Some other ways to multiply two matrices are given below, in fact simpler than the definition above.

Hadamard product
For two matrices of the same dimensions, there is the Hadamard product, also known as the element-wise
product, pointwise product, entrywise product and the Schur product. For two matrices A and B of the same
dimensions, the Hadamard product A ○ B is a matrix of the same dimensions, the i, j element of A is multiplied with
the i, j element of B, that is:

displayed fully:
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This operation is identical to many multiplying ordinary numbers (mn of them) all at once; thus the Hadamard
product is commutative, associative and distributive over entrywise addition. It is also a principal submatrix of the
Kronecker product. It appears in lossy compression algorithms such as JPEG.

Frobenius product
The Frobenius inner product, sometimes denoted A : B, is the component-wise inner product of two matrices as
though they are vectors. It is also the sum of the entries of the Hadamard product. Explicitly,

where "tr" denotes the trace of a matrix and vec denotes vectorization. This inner product induces the Frobenius
norm.

Kronecker product
For two matrices A and B of any different dimensions m × n and p × q respectively (no constraints on the dimensions
of each matrix), the Kronecker product denoted A ⊗ B is a matrix with dimensions mp × nq, which has
elements[citation needed]

,

where represents the floor function.
Explicitly:

This is the application of the more general tensor product applied to matrices.

Notes
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[2][2] McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
[3] Linear Algebra (4th Edition), S. Lipcshutz, M. Lipson, Schaum's Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-154352-1
[4] Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN

978-0-521-86153-3
[5][5] Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN
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[6][6] Press 2007, p. 108.
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[8][8] Robinson, 2005.
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• Wijesuriya, Viraj B., Daniweb: Sample Code for Matrix Multiplication using MPI Parallel Programming

Approach (http:/ / www. daniweb. com/ forums/ post1428830. html#post1428830), retrieved 2010-12-29
• Linear algebra: matrix operations (http:/ / www. umat. feec. vutbr. cz/ ~novakm/ algebra_matic/ en) Multiply or

add matrices of a type and with coefficients you choose and see how the result was computed.
• Visual Matrix Multiplication (http:/ / www. wefoundland. com/ project/ Visual_Matrix_Multiplication) An

interactive app for learning matrix multiplication.
• Matrix Multiplication in Java – Dr. P. Viry (http:/ / www. ateji. com/ px/ whitepapers/ Ateji PX MatMult

Whitepaper v1. 2. pdf?phpMyAdmin=95wsvAC1wsqrAq3j,M3duZU3UJ7)
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Transpose
This article is about the transpose of a matrix. For other uses, see Transposition

Note that this article assumes that matrices are taken over a commutative ring. These results may not hold in
the non-commutative case.

The transpose AT of a matrix A can be obtained by
reflecting the elements along its main diagonal.

Repeating the process on the transposed matrix returns
the elements to their original position.

In linear algebra, the transpose of a matrix A is another matrix AT

(also written A′, Atr,tA or At) created by any one of the following
equivalent actions:

• reflect A over its main diagonal (which runs from top-left to
bottom-right) to obtain AT

• write the rows of A as the columns of AT

• write the columns of A as the rows of AT

Formally, the i th row, j th column element of AT is the j th row, i
th column element of A:

If A is an m × n matrix then AT is an n × m matrix.
The transpose of a matrix was introduced in 1858 by the British
mathematician Arthur Cayley.[1]

Examples

•

•

•

Properties
For matrices A, B and scalar c we have the following properties of transpose:

1.
The operation of taking the transpose is an involution (self-inverse).

•
The transpose respects addition.

•
Note that the order of the factors reverses. From this one can deduce that a square matrix A is invertible if and
only if AT is invertible, and in this case we have (A−1)T = (AT)−1. By induction this result extends to the
general case of multiple matrices, where we find that (A1A2...Ak−1Ak)

T = Ak
TAk−1

T...A2
TA1

T.

•
The transpose of a scalar is the same scalar. Together with (2), this states that the transpose is a linear map
from the space of m × n matrices to the space of all n × m matrices.
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•
The determinant of a square matrix is the same as that of its transpose.
• The dot product of two column vectors a and b can be computed as

which is written as ai b
i in Einstein notation.

2. If A has only real entries, then ATA is a positive-semidefinite matrix.
3.

The transpose of an invertible matrix is also invertible, and its inverse is the transpose of the inverse of the
original matrix. The notation A−T is sometimes used to represent either of these equivalent expressions.
• If A is a square matrix, then its eigenvalues are equal to the eigenvalues of its transpose since they share the

same Characteristic polynomial.

Special transpose matrices
A square matrix whose transpose is equal to itself is called a symmetric matrix; that is, A is symmetric if

A square matrix whose transpose is equal to its negative is called a skew-symmetric matrix; that is, A is
skew-symmetric if

A square complex matrix whose transpose is equal to the matrix with every entry replaced by its complex conjugate
is called a Hermitian matrix (equivalent to the matrix being equal to its conjugate transpose); that is, A is Hermitian
if

A square complex matrix whose transpose is equal to the negation of its complex conjugate is called a
skew-Hermitian matrix; that is, A is skew-Hermitian if

A square matrix whose transpose is equal to its inverse is called an orthogonal matrix; that is, A is orthogonal if

Transpose of a linear map
The transpose may be defined using a coordinate-free approach:
If f : V → W is a linear map between vector spaces V and W with respective dual spaces V∗ and W∗, the transpose of
f is the linear map tf : W∗ → V∗ that satisfies

The definition of the transpose may be seen to be independent of any bilinear form on the vector spaces, unlike the
adjoint (below).
If the matrix A describes a linear map with respect to bases of V and W, then the matrix AT describes the transpose of
that linear map with respect to the dual bases.
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Transpose of a bilinear form
Every linear map to the dual space f : V → V∗ defines a bilinear form B : V × V → F, with the relation B(v, w) =
f(v)(w). By defining the transpose of this bilinear form as the bilinear form tB defined by the transpose tf : V∗∗ → V∗

i.e. tB(w, v) = tf(w)(v), we find that B(v,w) = tB(w,v).

Adjoint
If the vector spaces V and W have respective nondegenerate bilinear forms BV and BW, a concept closely related to
the transpose – the adjoint – may be defined:
If f : V → W is a linear map between vector spaces V and W, we define g as the adjoint of f if g : W → V satisfies

These bilinear forms define an isomorphism between V and V∗, and between W and W∗, resulting in an isomorphism
between the transpose and adjoint of f. The matrix of the adjoint of a map is the transposed matrix only if the bases
are orthonormal with respect to their bilinear forms. In this context, many authors use the term transpose to refer to
the adjoint as defined here.
The adjoint allows us to consider whether g : W → V is equal to f −1 : W → V. In particular, this allows the
orthogonal group over a vector space V with a quadratic form to be defined without reference to matrices (nor the
components thereof) as the set of all linear maps V → V for which the adjoint equals the inverse.
Over a complex vector space, one often works with sesquilinear forms (conjugate-linear in one argument) instead of
bilinear forms. The Hermitian adjoint of a map between such spaces is defined similarly, and the matrix of the
Hermitian adjoint is given by the conjugate transpose matrix if the bases are orthonormal.

Implementation of matrix transposition on computers
On a computer, one can often avoid explicitly transposing a matrix in memory by simply accessing the same data in
a different order. For example, software libraries for linear algebra, such as BLAS, typically provide options to
specify that certain matrices are to be interpreted in transposed order to avoid the necessity of data movement.
However, there remain a number of circumstances in which it is necessary or desirable to physically reorder a matrix
in memory to its transposed ordering. For example, with a matrix stored in row-major order, the rows of the matrix
are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the
columns, for example in a fast Fourier transform algorithm, transposing the matrix in memory (to make the columns
contiguous) may improve performance by increasing memory locality.
Ideally, one might hope to transpose a matrix with minimal additional storage. This leads to the problem of
transposing an n × m matrix in-place, with O(1) additional storage or at most storage much less than mn. For n ≠ m,
this involves a complicated permutation of the data elements that is non-trivial to implement in-place. Therefore
efficient in-place matrix transposition has been the subject of numerous research publications in computer science,
starting in the late 1950s, and several algorithms have been developed.
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Determinant
In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of
the matrix by a specific arithmetic expression, while other ways to determine its value exist as well. The determinant
provides important information about a matrix of coefficients of a system of linear equations, or about a matrix that
corresponds to a linear transformation of a vector space. In the first case the system has a unique solution exactly
when the determinant is nonzero; when the determinant is zero there are either no solutions or many solutions. In the
second case the transformation has an inverse operation exactly when the determinant is nonzero. A geometric
interpretation can be given to the value of the determinant of a square matrix with real entries: the absolute value of
the determinant gives the scale factor by which area or volume (or a higher dimensional analogue) is multiplied
under the associated linear transformation, while its sign indicates whether the transformation preserves orientation.
Thus a 2 × 2 matrix with determinant −2, when applied to a region of the plane with finite area, will transform that
region into one with twice the area, while reversing its orientation.
Determinants occur throughout mathematics. The use of determinants in calculus includes the Jacobian determinant
in the substitution rule for integrals of functions of several variables. They are used to define the characteristic
polynomial of a matrix that is an essential tool in eigenvalue problems in linear algebra. In some cases they are used
just as a compact notation for expressions that would otherwise be unwieldy to write down.
The determinant of a matrix A is denoted det(A), det A, or |A|. In the case where the matrix entries are written out in
full, the determinant is denoted by surrounding the matrix entries by vertical bars instead of the brackets or
parentheses of the matrix. For instance, the determinant of the matrix

is written

and has the value

Although most often used for matrices whose entries are real or complex numbers, the definition of the determinant 
only involves addition, subtraction and multiplication, and so it can be defined for square matrices with entries taken 
from any commutative ring. Thus for instance the determinant of a matrix with integer coefficients will be an
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integer, and the matrix has an inverse with integer coefficients if and only if this determinant is 1 or −1 (these being
the only invertible elements of the integers). For square matrices with entries in a non-commutative ring, for instance
the quaternions, there is no unique definition for the determinant, and no definition that has all the usual properties of
determinants over commutative rings.

Definition
There are various ways to define the determinant of a square matrix A, i.e. one with the same number of rows and
columns. Perhaps the most natural way is expressed in terms of the columns of the matrix. If we write an n × n
matrix in terms of its column vectors

where the are vectors of size n, then the determinant of A is defined so that

where b and c are scalars, v is any vector of size n and I is the identity matrix of size n. These equations say that the
determinant is a linear function of each column, that interchanging adjacent columns reverses the sign of the
determinant, and that the determinant of the identity matrix is 1. These properties mean that the determinant is an
alternating multilinear function of the columns that maps the identity matrix to the underlying unit scalar. These
suffice to uniquely calculate the determinant of any square matrix. Provided the underlying scalars form a field
(more generally, a commutative ring with unity), the definition below shows that such a function exists, and it can be
shown to be unique.[1]

Equivalently, the determinant can be expressed as a sum of products of entries of the matrix where each product has
n terms and the coefficient of each product is −1 or 1 or 0 according to a given rule: it is a polynomial expression of
the matrix entries. This expression grows rapidly with the size of the matrix (an n × n matrix contributes n! terms), so
it will first be given explicitly for the case of 2×2 matrices and 3 × 3 matrices, followed by the rule for arbitrary size
matrices, which subsumes these two cases.
Assume A is a square matrix with n rows and n columns, so that it can be written as

The entries can be numbers or expressions (as happens when the determinant is used to define a characteristic
polynomial); the definition of the determinant depends only on the fact that they can be added and multiplied
together in a commutative manner.
The determinant of A is denoted as det(A), or it can be denoted directly in terms of the matrix entries by writing
enclosing bars instead of brackets:
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2 × 2 matrices

The area of the parallelogram is the absolute
value of the determinant of the matrix formed by
the vectors representing the parallelogram's sides.

The determinant of a 2 × 2 matrix is defined by

If the matrix entries are real numbers, the matrix A can be used to
represent two linear mappings: one that maps the standard basis
vectors to the rows of A, and one that maps them to the columns of A.
In either case, the images of the basis vectors form a parallelogram that
represents the image of the unit square under the mapping. The
parallelogram defined by the rows of the above matrix is the one with
vertices at (0, 0), (a, b), (a + c, b + d), and (c, d), as shown in the
accompanying diagram. The absolute value of ad − bc is the area of
the parallelogram, and thus represents the scale factor by which areas
are transformed by A. (The parallelogram formed by the columns of A
is in general a different parallelogram, but since the determinant is
symmetric with respect to rows and columns, the area will be the
same.)

The absolute value of the determinant together with the sign becomes the oriented area of the parallelogram. The
oriented area is the same as the usual area, except that it is negative when the angle from the first to the second
vector defining the parallelogram turns in a clockwise direction (which is opposite to the direction one would get for
the identity matrix).

Thus the determinant gives the scaling factor and the orientation induced by the mapping represented by A. When the
determinant is equal to one, the linear mapping defined by the matrix is equi-areal and orientation-preserving.
The object known as the bivector is related to these ideas. In 2d, it can be interpreted as an oriented plane segment
formed by imagining two vectors each with origin (0, 0), and coordinates (a, b) and (c, d). The bivector magnitude
(denoted (a, b) ∧ (c, d)) is the signed area, which is also the determinant ad − bc.[2]
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3 × 3 matrices

The volume of this Parallelepiped is the absolute value of the determinant of the
matrix formed by the rows r1, r2, and r3.

The determinant of a 3×3 matrix is defined
by

The rule of Sarrus is a mnemonic for the 3x3 matrix determinant: the sum of the products of three diagonal
north-west to south-east lines of matrix elements, minus the sum of the products of three diagonal south-west to
north-east lines of elements, when the copies of the first two columns of the matrix are written beside it as in the
illustration. This scheme for calculating the determinant of a 3 × 3 matrix does not carry over into higher dimensions.

n × n matrices
The determinant of a matrix of arbitrary size can be defined by the Leibniz formula or the Laplace formula.
The Leibniz formula for the determinant of an n × n matrix A is

Here the sum is computed over all permutations σ of the set {1, 2, ..., n}. A permutation is a function that reorders
this set of integers. The value in the ith position after the reordering σ is denoted σi. For example, for n = 3, the
original sequence 1, 2, 3 might be reordered to σ = [2, 3, 1], with σ1 = 2, σ2 = 3, and σ3 = 1. The set of all such
permutations (also known as the symmetric group on n elements) is denoted Sn. For each permutation σ, sgn(σ)
denotes the signature of σ, a value that is +1 whenever the reordering given by σ can be achieved by successively
interchanging two entries an even number of times, and −1 whenever it can be achieved by an odd number of such
interchanges.
In any of the summands, the term
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is notation for the product of the entries at positions (i, σi), where i ranges from 1 to n:

For example, the determinant of a 3 × 3 matrix A (n = 3) is

Levi-Civita symbol

It is sometimes useful to extend the Leibniz formula to a summation in which not only permutations, but all
sequences of n indices in the range 1,...,n occur, ensuring that the contribution of a sequence will be zero unless it
denotes a permutation. Thus the totally antisymmetric Levi-Civita symbol extends the signature of a
permutation, by setting for any permutation σ of n, and when no
permutation σ exists such that for (or equivalently, whenever some pair of indices are
equal). The determinant for an n × n matrix can then be expressed using an n-fold summation as

Properties of the determinant
The determinant has many properties. Some basic properties of determinants are:

1. where In is the n × n identity matrix.
2.

3.

4. For square matrices A and B of equal size,

• for an n × n matrix.
2. If A is a triangular matrix, i.e. ai,j = 0 whenever i > j or, alternatively, whenever i < j, then its determinant equals

the product of the diagonal entries:

This can be deduced from some of the properties below, but it follows most easily directly from the Leibniz formula
(or from the Laplace expansion), in which the identity permutation is the only one that gives a non-zero contribution.
A number of additional properties relate to the effects on the determinant of changing particular rows or columns:

• Viewing an n × n matrix as being composed of n columns, the determinant is an n-linear function. This means
that if one column of a matrix A is written as a sum v + w of two column vectors, and all other columns are left
unchanged, then the determinant of A is the sum of the determinants of the matrices obtained from A by
replacing the column by v and then by w (and a similar relation holds when writing a column as a scalar
multiple of a column vector).
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2. This n-linear function is an alternating form. This means that whenever two columns of a matrix are identical, or
more generally some column can be expressed as a linear combination of the other columns (i.e. the columns of
the matrix form a linearly dependent set), its determinant is 0.

Properties 1, 7 and 8 — which all follow from the Leibniz formula — completely characterize the determinant; in
other words the determinant is the unique function from n × n matrices to scalars that is n-linear alternating in the
columns, and takes the value 1 for the identity matrix (this characterization holds even if scalars are taken in any
given commutative ring). To see this it suffices to expand the determinant by multi-linearity in the columns into a
(huge) linear combination of determinants of matrices in which each column is a standard basis vector. These
determinants are either 0 (by property 8) or else ±1 (by properties 1 and 11 below), so the linear combination gives
the expression above in terms of the Levi-Civita symbol. While less technical in appearance, this characterization
cannot entirely replace the Leibniz formula in defining the determinant, since without it the existence of an
appropriate function is not clear. For matrices over non-commutative rings, properties 7 and 8 are incompatible for n
≥ 2,[3] so there is no good definition of the determinant in this setting.
Property 2 above implies that properties for columns have their counterparts in terms of rows:

• Viewing an n × n matrix as being composed of n rows, the determinant is an n-linear function.
2. This n-linear function is an alternating form: whenever two rows of a matrix are identical, its determinant is 0.
3. Interchanging two columns of a matrix multiplies its determinant by −1. This follows from properties 7 and 8 (it

is a general property of multilinear alternating maps). Iterating gives that more generally a permutation of the
columns multiplies the determinant by the sign of the permutation. Similarly a permutation of the rows multiplies
the determinant by the sign of the permutation.

4. Adding a scalar multiple of one column to another column does not change the value of the determinant. This is a
consequence of properties 7 and 8: by property 7 the determinant changes by a multiple of the determinant of a
matrix with two equal columns, which determinant is 0 by property 8. Similarly, adding a scalar multiple of one
row to another row leaves the determinant unchanged.

These properties can be used to facilitate the computation of determinants by simplifying the matrix to the point
where the determinant can be determined immediately. Specifically, for matrices with coefficients in a field,
properties 11 and 12 can be used to transform any matrix into a triangular matrix, whose determinant is given by
property 6; this is essentially the method of Gaussian elimination.
For example, the determinant of

can be computed using the following matrices:

Here, B is obtained from A by adding −1/2×the first row to the second, so that det(A) = det(B). C is obtained from B
by adding the first to the third row, so that det(C) = det(B). Finally, D is obtained from C by exchanging the second
and third row, so that det(D) = −det(C). The determinant of the (upper) triangular matrix D is the product of its
entries on the main diagonal: (−2) · 2 · 4.5 = −18. Therefore det(A) = −det(D) = +18.
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Multiplicativity and matrix groups
The determinant of a matrix product of square matrices equals the product of their determinants:

Thus the determinant is a multiplicative map. This property is a consequence of the characterization given above of
the determinant as the unique n-linear alternating function of the columns with value 1 on the identity matrix, since
the function Mn(K) → K that maps M ↦ det(AM) can easily be seen to be n-linear and alternating in the columns of
M, and takes the value det(A) at the identity. The formula can be generalized to (square) products of rectangular
matrices, giving the Cauchy–Binet formula, which also provides an independent proof of the multiplicative property.
The determinant det(A) of a matrix A is non-zero if and only if A is invertible or, yet another equivalent statement, if
its rank equals the size of the matrix. If so, the determinant of the inverse matrix is given by

In particular, products and inverses of matrices with determinant one still have this property. Thus, the set of such
matrices (of fixed size n) form a group known as the special linear group. More generally, the word "special"
indicates the subgroup of another matrix group of matrices of determinant one. Examples include the special
orthogonal group (which if n is 2 or 3 consists of all rotation matrices), and the special unitary group.

Laplace's formula and the adjugate matrix
Laplace's formula expresses the determinant of a matrix in terms of its minors. The minor Mi,j is defined to be the
determinant of the (n−1) × (n−1)-matrix that results from A by removing the ith row and the jth column. The
expression (−1)i+jMi,j is known as cofactor. The determinant of A is given by

Calculating det(A) by means of that formula is referred to as expanding the determinant along a row or column. For
the example 3 × 3 matrix

Laplace expansion along the second column (j = 2, the sum runs over i) yields:

However, Laplace expansion is efficient for small matrices only.
The adjugate matrix adj(A) is the transpose of the matrix consisting of the cofactors, i.e.,
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Sylvester's determinant theorem
Sylvester's determinant theorem states that for A, an m × n matrix, and B, an n × m matrix (so that A and B have
dimensions allowing them to be multiplied in either order):

,
where Im and In are the m × m and n × n identity matrices, respectively.
From this general result several consequences follow.

(a) For the case of column vector c and row vector r, each with m components, the formula allows quick
calculation of the determinant of a matrix that differs from the identity matrix by a matrix of rank 1:

.
(b) More generally,[4] for any invertible m × m matrix X,

,
(c) For a column and row vector as above, .

Properties of the determinant in relation to other notions

Relation to eigenvalues and trace
Determinants can be used to find the eigenvalues of the matrix A: they are the solutions of the characteristic equation

where I is the identity matrix of the same dimension as A. Conversely, det(A) is the product of the eigenvalues of A,
counted with their algebraic multiplicities. The product of all non-zero eigenvalues is referred to as
pseudo-determinant.
An Hermitian matrix is positive definite if all its eigenvalues are positive. Sylvester's criterion asserts that this is
equivalent to the determinants of the submatrices

being positive, for all k between 1 and n.
The trace tr(A) is by definition the sum of the diagonal entries of A and also equals the sum of the eigenvalues. Thus,
for complex matrices A,

or, for real matrices A,

Here exp(A) denotes the matrix exponential of A, because every eigenvalue λ of A corresponds to the eigenvalue
exp(λ) of exp(A). In particular, given any logarithm of A, that is, any matrix L satisfying

the determinant of A is given by

For example, for n = 2, n=3, and n = 4, respectively,
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cf. Cayley-Hamilton theorem. Such expressions are deducible from Newton's identities.
In the general case, [5]

where the sum is taken over the set of all integers kl ≥ 0 satisfying the equation

An arbitrary dimension n identity can be obtained from the Mercator series expansion of the logarithm,

where I is the identity matrix. The sum and the expansion of the exponential only need to go up to n instead of ∞,
since the determinant cannot exceed O(An).

Cramer's rule
For a matrix equation

the solution is given by Cramer's rule:

where Ai is the matrix formed by replacing the ith column of A by the column vector b. This follows immediately by
column expansion of the determinant, i.e.

where the vectors are the columns of A. The rule is also implied by the identity

It has recently been shown that Cramer's rule can be implemented in O(n3) time,[6] which is comparable to more
common methods of solving systems of linear equations, such as LU, QR, or singular value decomposition.

Block matrices
Suppose A, B, C, and D are matrices of dimension (n × n), (n × m), (m × n), and (m × m), respectively. Then

This can be seen from the Leibniz formula or by induction on n. When A is invertible, employing the following
identity

leads to
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When D is invertible, a similar identity with factored out can be derived analogously,[7] that is,

When the blocks are square matrices of the same order further formulas hold. For example, if C and D commute (i.e.,
CD = DC), then the following formula comparable to the determinant of a 2×2 matrix holds:[8]

When A = D and B = C, the blocks are square matrices of the same order and the following formula holds (even if A
and B do not commute)

When D is a 1×1 matrix, B is a column vector, and C is a row vector then

Derivative
By definition, e.g., using the Leibniz formula, the determinant of real (or analogously for complex) square matrices
is a polynomial function from Rn × n to R. As such it is everywhere differentiable. Its derivative can be expressed
using Jacobi's formula:

where adj(A) denotes the adjugate of A. In particular, if A is invertible, we have

Expressed in terms of the entries of A, these are

Yet another equivalent formulation is

,
using big O notation. The special case where , the identity matrix, yields

This identity is used in describing the tangent space of certain matrix Lie groups.

If the matrix A is written as where a, b, c are vectors, then the gradient over one of the three
vectors may be written as the cross product of the other two:
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Abstract algebraic aspects

Determinant of an endomorphism
The above identities concerning the determinant of products and inverses of matrices imply that similar matrices
have the same determinant: two matrices A and B are similar, if there exists an invertible matrix X such that A =
X−1BX. Indeed, repeatedly applying the above identities yields

The determinant is therefore also called a similarity invariant. The determinant of a linear transformation

for some finite dimensional vector space V is defined to be the determinant of the matrix describing it, with respect
to an arbitrary choice of basis in V. By the similarity invariance, this determinant is independent of the choice of the
basis for V and therefore only depends on the endomorphism T.

Transformation on alternating multilinear n-forms
The vector space W of all alternating multilinear n-forms on an n-dimensional vector space V has dimension one. To
each linear transformation T on V we associate a linear transformation T′ on W, where for each w in W we define
(T′w)(x1,...,xn) = w(Tx1,...,Txn). As a linear transformation on a one-dimensional space, T′ is equivalent to a scalar
multiple. We call this scalar the determinant of T.

Exterior algebra
The determinant can also be characterized as the unique function

from the set of all n × n matrices with entries in a field K to this field satisfying the following three properties: first,
D is an n-linear function: considering all but one column of A fixed, the determinant is linear in the remaining
column, that is

for any column vectors v1, ..., vn, and w and any scalars (elements of K) a and b. Second, D is an alternating function:
for any matrix A with two identical columns D(A) = 0. Finally, D(In) = 1. Here In is the identity matrix.
This fact also implies that every other n-linear alternating function F: Mn(K) → K satisfies

The last part in fact follows from the preceding statement: one easily sees that if F is nonzero it satisfies F(I) ≠ 0,
and function that associates F(M)/F(I) to M satisfies all conditions of the theorem. The importance of stating this part
is mainly that it remains valid[9] if K is any commutative ring rather than a field, in which case the given argument
does not apply.
The determinant of a linear transformation A : V → V of an n-dimensional vector space V can be formulated in a
coordinate-free manner by considering the nth exterior power ΛnV of V. A induces a linear map

As ΛnV is one-dimensional, the map ΛnA is given by multiplying with some scalar. This scalar coincides with the
determinant of A, that is to say

This definition agrees with the more concrete coordinate-dependent definition. This follows from the 
characterization of the determinant given above. For example, switching two columns changes the parity of the
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determinant; likewise, permuting the vectors in the exterior product v1 ∧ v2 ∧ ... ∧ vn to v2 ∧ v1 ∧ v3 ∧ ... ∧ vn, say,
also alters the parity.
For this reason, the highest non-zero exterior power Λn(V) is sometimes also called the determinant of V and
similarly for more involved objects such as vector bundles or chain complexes of vector spaces. Minors of a matrix
can also be cast in this setting, by considering lower alternating forms ΛkV with k < n.

Square matrices over commutative rings and abstract properties
The determinant of a matrix can be defined, for example using the Leibniz formula, for matrices with entries in any
commutative ring. Briefly, a ring is a structure where addition, subtraction, and multiplication are defined. The
commutativity requirement means that the product does not depend on the order of the two factors, i.e.,

is supposed to hold for all elements r and s of the ring. For example, the integers form a commutative ring.
ManyWikipedia:Please clarify of the above statements and notions carry over mutatis mutandis to determinants of
these more general matrices: the determinant is multiplicative in this more general situation, and Cramer's rule also
holds. A square matrix over a commutative ring R is invertible if and only if its determinant is a unit in R, that is, an
element having a (multiplicative) inverse. (If R is a field, this latter condition is equivalent to the determinant being
nonzero, thus giving back the above characterization.) For example, a matrix A with entries in Z, the integers, is
invertible (in the sense that the inverse matrix has again integer entries) if the determinant is +1 or −1. Such a matrix
is called unimodular.
The determinant defines a mapping

between the group of invertible n × n matrices with entries in R and the multiplicative group of units in R. Since it
respects the multiplication in both groups, this map is a group homomorphism. Secondly, given a ring
homomorphism f: R → S, there is a map GLn(R) → GLn(S) given by replacing all entries in R by their images under
f. The determinant respects these maps, i.e., given a matrix A = (ai,j) with entries in R, the identity

holds. For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of
its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction
modulo m of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo m (the latter
determinant being computed using modular arithmetic). In the more high-brow parlance of category theory, the
determinant is a natural transformation between the two functors GLn and (⋅)×. Adding yet another layer of
abstraction, this is captured by saying that the determinant is a morphism of algebraic groups, from the general linear
group to the multiplicative group,
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Generalizations and related notions

Infinite matrices
For matrices with an infinite number of rows and columns, the above definitions of the determinant do not carry over
directly. For example, in Leibniz' formula, an infinite sum (all of whose terms are infinite products) would have to be
calculated. Functional analysis provides different extensions of the determinant for such infinite-dimensional
situations, which however only work for particular kinds of operators.
The Fredholm determinant defines the determinant for operators known as trace class operators by an appropriate
generalization of the formula

Another infinite-dimensional notion of determinant is the functional determinant.

Notions of determinant over non-commutative rings
For square matrices with entries in a non-commutative ring, there are various difficulties in defining determinants in
a manner analogous to that for commutative rings. A meaning can be given to the Leibniz formula provided the
order for the product is specified, and similarly for other ways to define the determinant, but non-commutativity then
leads to the loss of many fundamental properties of the determinant, for instance the multiplicative property or the
fact that the determinant is unchanged under transposition of the matrix. Over non-commutative rings, there is no
reasonable notion of a multilinear form (if a bilinear form exists with a regular element of R as value on some pair of
arguments, it can be used to show that all elements of R commute). Nevertheless various notions of
non-commutative determinant have been formulated, which preserve some of the properties of determinants, notably
quasideterminants and the Dieudonné determinant. It should also be noted that if one considers certain specific
classes of matrices with non-commutative elements, then there are examples where one can define the determinant
and prove linear algebra theorems which are very similar to their commutative analogs. Examples include: quantum
groups and q-determinant; Capelli matrix and Capelli determinant; super-matrices and Berezinian; Manin matrices is
the class of matrices which is most close to matrices with commutative elements.

Further variants
Determinants of matrices in superrings (that is, Z2-graded rings) are known as Berezinians or superdeterminants.
The permanent of a matrix is defined as the determinant, except that the factors sgn(σ) occurring in Leibniz' rule are
omitted. The immanant generalizes both by introducing a character of the symmetric group Sn in Leibniz' rule.

Calculation
Determinants are mainly used as a theoretical tool. They are rarely calculated explicitly in numerical linear algebra,
where for applications like checking invertibility and finding eigenvalues the determinant has largely been
supplanted by other techniques.[10] Nonetheless, explicitly calculating determinants is required in some situations,
and different methods are available to do so.
Naive methods of implementing an algorithm to compute the determinant include using Leibniz' formula or
Laplace's formula. Both these approaches are extremely inefficient for large matrices, though, since the number of
required operations grows very quickly: it is of order n! (n factorial) for an n × n matrix M. For example, Leibniz'
formula requires to calculate n! products. Therefore, more involved techniques have been developed for calculating
determinants.
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Decomposition methods
Given a matrix A, some methods compute its determinant by writing A as a product of matrices whose determinants
can be more easily computed. Such techniques are referred to as decomposition methods. Examples include the LU
decomposition, the QR decomposition or the Cholesky decomposition (for positive definite matrices). These
methods are of order O(n3), which is a significant improvement over O(n!)
The LU decomposition expresses A in terms of a lower triangular matrix L, an upper triangular matrix U and a
permutation matrix P:

The determinants of L and U can be quickly calculated, since they are the products of the respective diagonal entries.
The determinant of P is just the sign of the corresponding permutation (which is +1 for an even number of
permutations and is −1 for an uneven number of permutations). The determinant of A is then

Moreover, the decomposition can be chosen such that L is a unitriangular matrix and therefore has determinant 1, in
which case the formula further simplifies to

Further methods
If the determinant of A and the inverse of A have already been computed, the matrix determinant lemma allows to
quickly calculate the determinant of A + uvT, where u and v are column vectors.
Since the definition of the determinant does not need divisions, a question arises: do fast algorithms exist that do not
need divisions? This is especially interesting for matrices over rings. Indeed algorithms with run-time proportional to
n4 exist. An algorithm of Mahajan and Vinay, and Berkowitz[11] is based on closed ordered walks (short clow). It
computes more products than the determinant definition requires, but some of these products cancel and the sum of
these products can be computed more efficiently. The final algorithm looks very much like an iterated product of
triangular matrices.
If two matrices of order n can be multiplied in time M(n), where M(n) ≥ na for some a > 2, then the determinant can
be computed in time O(M(n)).[12] This means, for example, that an O(n2.376) algorithm exists based on the
Coppersmith–Winograd algorithm.
Algorithms can also be assessed according to their bit complexity, i.e., how many bits of accuracy are needed to
store intermediate values occurring in the computation. For example, the Gaussian elimination (or LU
decomposition) methods is of order O(n3), but the bit length of intermediate values can become exponentially long.
The Bareiss Algorithm, on the other hand, is an exact-division method based on Sylvester's identity is also of order
n3, but the bit complexity is roughly the bit size of the original entries in the matrix times n.

History
Historically, determinants were considered without reference to matrices: originally, a determinant was defined as a
property of a system of linear equations. The determinant "determines" whether the system has a unique solution
(which occurs precisely if the determinant is non-zero). In this sense, determinants were first used in the Chinese
mathematics textbook The Nine Chapters on the Mathematical Art (九 章 算 術, Chinese scholars, around the 3rd
century BC). In Europe, 2 × 2 determinants were considered by Cardano at the end of the 16th century and larger
ones by Leibniz.[13][14][15]

In Europe, Cramer (1750) added to the theory, treating the subject in relation to sets of equations. The recurrence law
was first announced by Bézout (1764).
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It was Vandermonde (1771) who first recognized determinants as independent functions.[] Laplace (1772) [16][17]

gave the general method of expanding a determinant in terms of its complementary minors: Vandermonde had
already given a special case. Immediately following, Lagrange (1773) treated determinants of the second and third
order. Lagrange was the first to apply determinants to questions of elimination theory; he proved many special cases
of general identities.
Gauss (1801) made the next advance. Like Lagrange, he made much use of determinants in the theory of numbers.
He introduced the word determinant (Laplace had used resultant), though not in the present signification, but rather
as applied to the discriminant of a quantic. Gauss also arrived at the notion of reciprocal (inverse) determinants, and
came very near the multiplication theorem.
The next contributor of importance is Binet (1811, 1812), who formally stated the theorem relating to the product of
two matrices of m columns and n rows, which for the special case of m = n reduces to the multiplication theorem. On
the same day (November 30, 1812) that Binet presented his paper to the Academy, Cauchy also presented one on the
subject. (See Cauchy–Binet formula.) In this he used the word determinant in its present sense,[18][19] summarized
and simplified what was then known on the subject, improved the notation, and gave the multiplication theorem with
a proof more satisfactory than Binet's.[20] With him begins the theory in its generality.
The next important figure was Jacobi (from 1827). He early used the functional determinant which Sylvester later
called the Jacobian, and in his memoirs in Crelle for 1841 he specially treats this subject, as well as the class of
alternating functions which Sylvester has called alternants. About the time of Jacobi's last memoirs, Sylvester (1839)
and Cayley began their work.[21][22]

The study of special forms of determinants has been the natural result of the completion of the general theory.
Axisymmetric determinants have been studied by Lebesgue, Hesse, and Sylvester; persymmetric determinants by
Sylvester and Hankel; circulants by Catalan, Spottiswoode, Glaisher, and Scott; skew determinants and Pfaffians, in
connection with the theory of orthogonal transformation, by Cayley; continuants by Sylvester; Wronskians (so called
by Muir) by Christoffel and Frobenius; compound determinants by Sylvester, Reiss, and Picquet; Jacobians and
Hessians by Sylvester; and symmetric gauche determinants by Trudi. Of the textbooks on the subject Spottiswoode's
was the first. In America, Hanus (1886), Weld (1893), and Muir/Metzler (1933) published treatises.

Applications

Linear independence
As mentioned above, the determinant of a matrix (with real or complex entries, say) is zero if and only if the column
vectors of the matrix are linearly dependent. Thus, determinants can be used to characterize linearly dependent
vectors. For example, given two linearly independent vectors v1, v2 in R3, a third vector v3 lies in the plane spanned
by the former two vectors exactly if the determinant of the 3 × 3 matrix consisting of the three vectors is zero. The
same idea is also used in the theory of differential equations: given n functions f1(x), ..., fn(x) (supposed to be n−1
times differentiable), the Wronskian is defined to be

It is non-zero (for some x) in a specified interval if and only if the given functions and all their derivatives up to
order n−1 are linearly independent. If it can be shown that the Wronskian is zero everywhere on an interval then, in
the case of analytic functions, this implies the given functions are linearly dependent. See the Wronskian and linear
independence.
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Orientation of a basis
The determinant can be thought of as assigning a number to every sequence of n vectors in Rn, by using the square
matrix whose columns are the given vectors. For instance, an orthogonal matrix with entries in Rn represents an
orthonormal basis in Euclidean space. The determinant of such a matrix determines whether the orientation of the
basis is consistent with or opposite to the orientation of the standard basis. If the determinant is +1, the basis has the
same orientation. If it is −1, the basis has the opposite orientation.
More generally, if the determinant of A is positive, A represents an orientation-preserving linear transformation (if A
is an orthogonal 2×2 or 3 × 3 matrix, this is a rotation), while if it is negative, A switches the orientation of the basis.

Volume and Jacobian determinant
As pointed out above, the absolute value of the determinant of real vectors is equal to the volume of the
parallelepiped spanned by those vectors. As a consequence, if f: Rn → Rn is the linear map represented by the matrix
A, and S is any measurable subset of Rn, then the volume of f(S) is given by |det(A)| times the volume of S. More
generally, if the linear map f: Rn → Rm is represented by the m × n matrix A, then the n-dimensional volume of f(S)
is given by:

By calculating the volume of the tetrahedron bounded by four points, they can be used to identify skew lines. The
volume of any tetrahedron, given its vertices a, b, c, and d, is (1/6)·|det(a − b, b − c, c − d)|, or any other
combination of pairs of vertices that would form a spanning tree over the vertices.
For a general differentiable function, much of the above carries over by considering the Jacobian matrix of f. For

the Jacobian is the n × n matrix whose entries are given by

Its determinant, the Jacobian determinant appears in the higher-dimensional version of integration by substitution:
for suitable functions f and an open subset U of R'n (the domain of f), the integral over f(U) of some other function φ:
Rn → Rm is given by

The Jacobian also occurs in the inverse function theorem.

Vandermonde determinant (alternant)
Third order

In general, the nth-order Vandermonde determinant is [23]
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where the right-hand side is the continued product of all the differences that can be formed from the n(n−1)/2 pairs
of numbers taken from x1, x2, ..., xn, with the order of the differences taken in the reversed order of the suffixes that
are involved.

Circulants
Second order

Third order

where ω and ω2 are the complex cube roots of 1. In general, the nth-order circulant determinant is

where ωj is an nth root of 1.

Notes
[1] Serge Lang, Linear Algebra, 2nd Edition, Addison-Wesley, 1971, pp 173, 191.
[2] WildLinAlg episode 4 (http:/ / www. youtube. com/ watch?v=6XghF70fqkY), Norman J Wildberger, Univ. of New South Wales, 2010,

lecture via youtube
[3] In a non-commutative setting left-linearity (compatibility with left-multiplication by scalars) should be distinguished from right-linearity.

Assuming linearity in the columns is taken to be left-linearity, one would have, for non-commuting scalars a, b:

UNIQ-math-0-efccba492c5c7a1c-QINU
a contradiction. There is no useful notion of multi-linear functions over a non-commutative ring.

[4] Proofs can be found in http:/ / www. ee. ic. ac. uk/ hp/ staff/ dmb/ matrix/ proof003. html
[5] A proof can be found in the Appendix B of L. A. Kondratyuk, M. I. Krivoruchenko (1992), Zeitschrift für Physik A 344, 99-115.
[6] Ken Habgood, Itamar Arel, A condensation-based application of Cramerʼs rule for solving large-scale linear systems, Journal of Discrete

Algorithms, 10 (2012), pp. 98–109. Available online 1 July 2011, ISSN 1570–8667, 10.1016/j.jda.2011.06.007.
[7] These identities were taken from http:/ / www. ee. ic. ac. uk/ hp/ staff/ dmb/ matrix/ proof003. html
[8] Proofs are given in J.R. Silvester, Determinants of Block Matrices, Math. Gazette, 84 (2000), pp. 460–467, available at http:/ / www. jstor.

org/ stable/ 3620776
[9] Roger Godement, Cours d'Algèbre, seconde édition, Hermann (1966), §23, Théorème 5, p. 303
[10] L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997). e.g. in Lecture 1: "... we mention that the determinant, though a

convenient notion theoretically, rarely finds a useful role in numerical algorithms."
[11] http:/ / page. inf. fu-berlin. de/ ~rote/ Papers/ pdf/ Division-free+ algorithms. pdf
[12] J.R. Bunch and J.E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, 28 (1974)

231–236.
[13] Eves, H: "An Introduction to the History of Mathematics", pages 405, 493–494, Saunders College Publishing, 1990.
[14] A Brief History of Linear Algebra and Matrix Theory : http:/ / darkwing. uoregon. edu/ ~vitulli/ 441. sp04/ LinAlgHistory. html
[15] Cajori, F. A History of Mathematics p. 80 (http:/ / books. google. com/ books?id=bBoPAAAAIAAJ& pg=PA80#v=onepage& f=false)
[16] Expansion of determinants in terms of minors: Laplace, Pierre-Simon (de) "Researches sur le calcul intégral et sur le systéme du monde,"

Histoire de l'Académie Royale des Sciences (Paris), seconde partie, pages 267–376 (1772).
[17] Muir, Sir Thomas, The Theory of Determinants in the historical Order of Development [London, England: Macmillan and Co., Ltd., 1906].
[18] The first use of the word "determinant" in the modern sense appeared in: Cauchy, Augustin-Louis “Memoire sur les fonctions qui ne peuvent 

obtenir que deux valeurs égales et des signes contraires par suite des transpositions operées entre les variables qu'elles renferment," which was 
first read at the Institute de France in Paris on November 30, 1812, and which was subsequently published in the Journal de l'Ecole

http://www.youtube.com/watch?v=6XghF70fqkY
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/proof003.html
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/proof003.html
http://www.jstor.org/stable/3620776
http://www.jstor.org/stable/3620776
https://en.wikipedia.org/w/index.php?title=Roger_Godement
http://page.inf.fu-berlin.de/~rote/Papers/pdf/Division-free+algorithms.pdf
http://darkwing.uoregon.edu/~vitulli/441.sp04/LinAlgHistory.html
http://books.google.com/books?id=bBoPAAAAIAAJ&pg=PA80#v=onepage&f=false


Determinant 283

Polytechnique, Cahier 17, Tome 10, pages 29–112 (1815).
[19] Origins of mathematical terms: http:/ / jeff560. tripod. com/ d. html
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Minor (linear algebra)
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by
removing one or more of its rows or columns. Minors obtained by removing just one row and one column from
square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing
both the determinant and inverse of square matrices.

Definition and illustration

First minors
If A is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j) minor, or a
first minor[1]) is the determinant of the submatrix formed by deleting the i-th row and j-th column. This number is
often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the minor by .
To illustrate these definitions, consider the following 3 by 3 matrix,

To compute the minor M23 and the cofactor C23, we find the determinant of the above matrix with row 2 and column
3 removed.

So the cofactor of the (2,3) entry is

General definition
Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n. A k × k minor of A is the determinant of a k ×
k matrix obtained from A by deleting m − k rows and n − k columns. For such a matrix there are a total of

minors of size k × k.

Complement
The complement, Bijk...,pqr..., of a minor, Mijk...,pqr..., of a square matrix, A, is formed by the determinant of the matrix
A from which all the rows (ijk...) and columns (pqr...) associated with Mijk...,pqr... have been removed. The
complement of the first minor of an element aij is merely that element.[2]
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Applications of minors and cofactors

Cofactor expansion of the determinant
The cofactors feature prominently in Laplace's formula for the expansion of determinants, which is a method of
computing larger determinants in terms of smaller ones. Given the matrix , the determinant of A

(denoted det(A)) can be written as the sum of the cofactors of any row or column of the matrix multiplied by the
entries that generated them. In other words, the cofactor expansion along the jth column gives:

The cofactor expansion along the ith row gives:

Inverse of a matrix
One can write down the inverse of an invertible matrix by computing its cofactors by using Cramer's rule, as follows.
The matrix formed by all of the cofactors of a square matrix A is called the cofactor matrix (also called the matrix
of cofactors):

Then the inverse of A is the transpose of the cofactor matrix times the inverse of the determinant of A:

The transpose of the cofactor matrix is called the adjugate matrix (also called the classical adjoint) of A.

Other applications
Given an m × n matrix with real entries (or entries from any other field) and rank r, then there exists at least one
non-zero r × r minor, while all larger minors are zero.
We will use the following notation for minors: if A is an m × n matrix, I is a subset of {1,...,m} with k elements and J
is a subset of {1,...,n} with k elements, then we write [A]I,J for the k × k minor of A that corresponds to the rows with
index in I and the columns with index in J.
• If I = J, then [A]I,J is called a principal minor.
• If the matrix that corresponds to a principal minor is a quadratic upper-left part of the larger matrix (i.e., it

consists of matrix elements in rows and columns from 1 to k), then the principal minor is called a leading
principal minor. For an n × n square matrix, there are n leading principal minors.

• For Hermitian matrices, the leading principal minors can be used to test for positive definiteness.
Both the formula for ordinary matrix multiplication and the Cauchy-Binet formula for the determinant of the product
of two matrices are special cases of the following general statement about the minors of a product of two matrices.
Suppose that A is an m × n matrix, B is an n × p matrix, I is a subset of {1,...,m} with k elements and J is a subset of
{1,...,p} with k elements. Then
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where the sum extends over all subsets K of {1,...,n} with k elements. This formula is a straightforward extension of
the Cauchy-Binet formula.

Multilinear algebra approach
A more systematic, algebraic treatment of the minor concept is given in multilinear algebra, using the wedge
product: the k-minors of a matrix are the entries in the kth exterior power map.
If the columns of a matrix are wedged together k at a time, the k × k minors appear as the components of the resulting
k-vectors. For example, the 2 × 2 minors of the matrix

are −13 (from the first two rows), −7 (from the first and last row), and 5 (from the last two rows). Now consider the
wedge product

where the two expressions correspond to the two columns of our matrix. Using the properties of the wedge product,
namely that it is bilinear[3] and

and

we can simplify this expression to

where the coefficients agree with the minors computed earlier.

A remark about different notations
In some books [4] instead of cofactor the term adjunct is used. Moreover, it is denoted as Aij and defined in the same
way as cofactor:

Using this notation the inverse matrix is written this way:

Keep in mind that adjunct is not adjugate or adjoint[3]. In modern terminology, the "adjoint" of a matrix most often
refers to the corresponding adjoint operator.
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Adjugate matrix
In linear algebra, the adjugate or classical adjoint (occasionally referred to as adjunct) of a square matrix is the
transpose of the cofactor matrix.
The adjugate has sometimes been called the "adjoint", but today the "adjoint" of a matrix normally refers to its
corresponding adjoint operator, which is its conjugate transpose.

Definition
The adjugate of A is the transpose of the cofactor matrix C of A:

.
In more detail: suppose R is a commutative ring and A is an n×n matrix with entries from R.
• The (i,j) minor of A, denoted Aij, is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i

and column j of A.
• The cofactor matrix of A is the n×n matrix C whose (i,j) entry is the (i,j) cofactor of A:

.
• The adjugate of A is the transpose of C, that is, the n×n matrix whose (i,j) entry is the (j,i) cofactor of A:

.
The adjugate is defined as it is so that the product of A and its adjugate yields a diagonal matrix whose diagonal
entries are det(A):

.
A is invertible if and only if det(A) is an invertible element of R, and in that case the equation above yields:

,

.
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Examples

2 × 2 generic matrix
The adjugate of the 2 × 2 matrix

is

.

It is seen that det(adj(A)) = det(A) and adj(adj(A)) = A.

3 × 3 generic matrix
Consider the matrix

Its adjugate is the transpose of the cofactor matrix

So that we have

where

.

Therefore C, the matrix of cofactors for A, is

The adjugate is the transpose of the cofactor matrix. Thus, for instance, the (3,2) entry of the adjugate is the (2,3)
cofactor of A. (In this example, C happens to be its own transpose, so adj(A) = C.)
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3 × 3 numeric matrix
As a specific example, we have

.

The −6 in the third row, second column of the adjugate was computed as follows:

Again, the (3,2) entry of the adjugate is the (2,3) cofactor of A. Thus, the submatrix

was obtained by deleting the second row and third column of the original matrix A.

Properties
The adjugate has the properties

for n×n matrices A and B. The second line follows from equations adj(B)adj(A) = det(B)B-1 det(A)A-1 =
det(AB)(AB)-1. Substituting in the second line B = Am - 1 and performing the recursion, one gets for all integer m

The adjugate preserves transposition:

Furthermore,

and, if det(A) is a unit, then det(adj(A)) = det(A) and adj(adj(A)) = A.

Inverses
As a consequence of Laplace's formula for the determinant of an n×n matrix A, we have

where is the n×n identity matrix. Indeed, the (i,i) entry of the product A adj(A) is the scalar product of row i of A
with row i of the cofactor matrix C, which is simply the Laplace formula for det(A) expanded by row i. Moreover,
for i ≠ j the (i,j) entry of the product is the scalar product of row i of A with row j of C, which is the Laplace formula
for the determinant of a matrix whose i and j rows are equal and is therefore zero.
From this formula follows one of the most important results in matrix algebra: A matrix A over a commutative ring
R is invertible if and only if det(A) is invertible in R.
For if A is an invertible matrix then

and equation (*) above shows that
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See also Cramer's rule.

Characteristic polynomial
If p(t) = det(A − t I) is the characteristic polynomial of A and we define the polynomial q(t) = (p(0) − p(t))/t, then

where are the coefficients of p(t),

Jacobi's formula
The adjugate also appears in Jacobi's formula for the derivative of the determinant:
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Invertible matrix
In linear algebra an n-by-n (square) matrix A is called invertible (some authors use nonsingular or nondegenerate)
if there exists an n-by-n matrix B such that

where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the
case, then the matrix B is uniquely determined by A and is called the inverse of A, denoted by A−1. It follows from
the theory of matrices that if

for finite square matrices A and B, then also

Non-square matrices (m-by-n matrices for which m ≠ n) do not have an inverse. However, in some cases such a
matrix may have a left inverse or right inverse. If A is m-by-n and the rank of A is equal to n, then A has a left
inverse: an n-by-m matrix B such that BA = I. If A has rank m, then it has a right inverse: an n-by-m matrix B such
that AB = I.
A square matrix that is not invertible is called singular or degenerate. A square matrix is singular if and only if its
determinant is 0. Singular matrices are rare in the sense that a square matrix randomly selected from a continuous
uniform distribution on its entries will almost never be singular.
While the most common case is that of matrices over the real or complex numbers, all these definitions can be given
for matrices over any commutative ring. However, in this case the condition for a square matrix to be invertible is
that its determinant is invertible in the ring, which in general is a much stricter requirement than being nonzero. The
conditions for existence of left-inverse resp. right-inverse are more complicated since a notion of rank does not exist
over rings.
Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix
A.

Properties

The invertible matrix theorem
Let A be a square n by n matrix over a field K (for example the field R of real numbers). The following statements
are equivalent:

A is invertible, i.e. A has an inverse, is nonsingular, or is nondegenerate.
A is row-equivalent to the n-by-n identity matrix In.
A is column-equivalent to the n-by-n identity matrix In.
A has n pivot positions.
det A ≠ 0. In general, a square matrix over a commutative ring is invertible if and only if its determinant is a
unit in that ring.
A has full rank; that is, rank A = n.
The equation Ax = 0 has only the trivial solution x = 0
Null A = {0}
The equation Ax = b has exactly one solution for each b in Kn.
The columns of A are linearly independent.
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The columns of A span Kn

Col A = Kn

The columns of A form a basis of Kn.
The linear transformation mapping x to Ax is a bijection from Kn to Kn.
There is an n by n matrix B such that AB = In = BA.
The transpose AT is an invertible matrix (hence rows of A are linearly independent, span Kn, and form a basis
of Kn).
The number 0 is not an eigenvalue of A.
The matrix A can be expressed as a finite product of elementary matrices.
The matrix A has a left inverse (i.e. there exists a B such that BA = I) or a right inverse (i.e. there exists a C
such that AC = I), in which case both left and right inverses exist and B = C = A-1.

Other properties
Furthermore, the following properties hold for an invertible matrix A:
• (A−1)−1 = A;
• (kA)−1 = k−1A−1 for nonzero scalar k;
• (AT)−1 = (A−1)T;
• For any invertible n-by-n matrices A and B, (AB)−1 = B−1A−1. More generally, if A1,...,Ak are invertible n-by-n

matrices, then (A1A2⋯Ak−1Ak)
−1 = Ak

−1Ak−1
−1⋯A2

−1A1
−1;

• det(A−1) = det(A)−1.
A matrix that is its own inverse, i.e. A = A−1 and A2 = I, is called an involution.

Density
Over the field of real numbers, the set of singular n-by-n matrices, considered as a subset of Rn×n, is a null set, i.e.,
has Lebesgue measure zero. This is true because singular matrices are the roots of the polynomial function in the
entries of the matrix given by the determinant. Thus in the language of measure theory, almost all n-by-n matrices
are invertible.
Furthermore the n-by-n invertible matrices are a dense open set in the topological space of all n-by-n matrices.
Equivalently, the set of singular matrices is closed and nowhere dense in the space of n-by-n matrices.
In practice however, one may encounter non-invertible matrices. And in numerical calculations, matrices which are
invertible, but close to a non-invertible matrix, can still be problematic; such matrices are said to be ill-conditioned.

Methods of matrix inversion

Gaussian elimination
Gauss–Jordan elimination is an algorithm that can be used to determine whether a given matrix is invertible and to
find the inverse. An alternative is the LU decomposition which generates upper and lower triangular matrices which
are easier to invert.

Newton's method
A generalisation of Newton's method as used for a multiplicative inverse algorithm may be convenient, if it is
convenient to find a suitable starting seed:
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Victor Pan and John Reif have done work that includes ways of generating a starting seed. Otherwise, the method
may be adapted to use the starting seed from a trivial starting case by using a homotopy to "walk" in small steps from
that to the matrix needed, "dragging" the inverses with them:

where  and for some terminating N,
perhaps followed by another few iterations at A to settle the inverse.

Using this simplistically on real valued matrices would lead the homotopy through a degenerate matrix about half the
time, so complex valued matrices should be used to bypass that, e.g. by using a starting seed S that has i in the first
entry, 1 on the rest of the leading diagonal, and 0 elsewhere. If complex arithmetic is not directly available, it may be
emulated at a small cost in computer memory by replacing each complex matrix element a+bi with a 2×2 real valued

submatrix of the form (see square root of a matrix).

Newton's method is particularly useful when dealing with families of related matrices that behave enough like the
sequence manufactured for the homotopy above: sometimes a good starting point for refining an approximation for
the new inverse can be the already obtained inverse of a previous matrix that nearly matches the current matrix, e.g.
the pair of sequences of inverse matrices used in obtaining matrix square roots by Denman-Beavers iteration; this
may need more than one pass of the iteration at each new matrix, if they are not close enough together for just one to
be enough. Newton's method is also useful for "touch up" corrections to the Gauss–Jordan algorithm which has been
contaminated by small errors due to imperfect computer arithmetic.

Cayley–Hamilton method
Cayley–Hamilton theorem allows to represent the inverse of A in terms of det(A), traces and powers of A

where n is dimenison of A, and the sum is taken over s and the sets of all kl ≥ 0 satisfying the linear Diophantine
equation

Eigendecomposition
If matrix A can be eigendecomposed and if none of its eigenvalues are zero, then A is nonsingular and its inverse is
given by

where Q is the square (N×N) matrix whose ith column is the eigenvector of A and Λ is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues, i.e., . Furthermore, because Λ is a diagonal matrix,
its inverse is easy to calculate:
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Cholesky decomposition
If matrix A is positive definite, then its inverse can be obtained as

where L is the lower triangular Cholesky decomposition of A, and L* denotes the conjugate transpose of L.

Analytic solution
Writing the transpose of the matrix of cofactors, known as an adjugate matrix, can also be an efficient way to
calculate the inverse of small matrices, but this recursive method is inefficient for large matrices. To determine the
inverse, we calculate a matrix of cofactors:

so that

where |A| is the determinant of A, C is the matrix of cofactors, and CT represents the matrix transpose.

Inversion of 2×2 matrices

The cofactor equation listed above yields the following result for 2×2 matrices. Inversion of these matrices can be
done easily as follows:[1]

This is possible because 1/(ad-bc) is the reciprocal of the determinant of the matrix in question, and the same
strategy could be used for other matrix sizes.
The Cayley–Hamilton method gives

Inversion of 3×3 matrices

A computationally efficient 3x3 matrix inversion is given by

where the determinant of A can be computed by applying the rule of Sarrus as follows:

If the determinant is non-zero, the matrix is invertible, with the elements of the above matrix on the right side given
by

The Cayley–Hamilton decomposition gives
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The general 3×3 inverse can be expressed concisely in terms of the cross product and triple product:

If a matrix (consisting of three column vectors, , , and ) is invertible, its inverse is
given by

Note that is equal to the triple product of , , and —the volume of the parallelepiped formed by
the rows or columns:

The correctness of the formula can be checked by using cross- and triple-product properties and by noting that for
groups, left and right inverses always coincide. Intuitively, because of the cross products, each row of is
orthogonal to the non-corresponding two columns of (causing the off-diagonal terms of be zero).
Dividing by

causes the diagonal elements of to be unity. For example, the first diagonal is:

Inversion of 4×4 matrices

With increasing dimension, expressions for the inverse of A get complicated. For n = 4 the Cayley-Hamilton method
leads to an expression that is still tractable:

Blockwise inversion
Matrices can also be inverted blockwise by using the following analytic inversion formula:

where A, B, C and D are matrix sub-blocks of arbitrary size. (A and D must be square, so that they can be inverted.
Furthermore, A and D−CA−1B must be nonsingular.) This strategy is particularly advantageous if A is diagonal and
D−CA−1B (the Schur complement of A) is a small matrix, since they are the only matrices requiring inversion. This
technique was reinvented several times and is due to Hans Boltz (1923),[citation needed] who used it for the inversion
of geodetic matrices, and Tadeusz Banachiewicz (1937), who generalized it and proved its correctness.
The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse
matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix.
The inversion procedure that led to Equation (1) performed matrix block operations that operated on C and D first.
Instead, if A and B are operated on first, and provided D and A−BD−1C are nonsingular , the result is

Equating Equations (1) and (2) leads to
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where Equation (3) is the matrix inversion lemma, which is equivalent to the binomial inverse theorem.
Since a blockwise inversion of an n×n matrix requires inversion of two half-sized matrices and 6 multiplications
between two half-sized matrices, it can be shown that a divide and conquer algorithm that uses blockwise inversion
to invert a matrix runs with the same time complexity as the matrix multiplication algorithm that is used internally.[2]

There exist matrix multiplication algorithms with a complexity of O(n2.3727) operations, while the best proven lower
bound is Ω(n2 log n).[3]

By Neumann series
If a matrix A has the property that

then A is nonsingular and its inverse may be expressed by a Neumann series:

Truncating the sum results in an "approximate" inverse which may be useful as a preconditioner. Note that a
truncated series can be accelerated exponentially by noting that the Neumann series is a geometric sum. Therefore, if
one wishes to compute terms, one merely need the moments which can be found through

L matrix multiplications. Then another L matrix multiplications are needed to obtains the final result by multiplying
all the moments together. Therefore, 2L matrix multiplications are needed to compute terms of the sum.
More generally, if A is "near" the invertible matrix X in the sense that

then A is nonsingular and its inverse is

If it is also the case that A-X has rank 1 then this simplifies to

Derivative of the matrix inverse
Suppose that the invertible matrix A depends on a parameter t. Then the derivative of the inverse of A with respect to
t is given by

To derive the above expression for the derivative of the inverse of A, one can differentiate the definition of the
matrix inverse and then solve for the inverse of A:
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Subtracting from both sides of the above and multiplying on the right by gives the correct

expression for the derivative of the inverse:

Similarly, if is a small number then

Moore–Penrose pseudoinverse
Some of the properties of inverse matrices are shared by Moore–Penrose pseudoinverses, which can be defined for
any m-by-n matrix.

Applications
For most practical applications, it is not necessary to invert a matrix to solve a system of linear equations; however,
for a unique solution, it is necessary that the matrix involved be invertible.
Decomposition techniques like LU decomposition are much faster than inversion, and various fast algorithms for
special classes of linear systems have also been developed.

Matrix inverses in real-time simulations
Matrix inversion plays a significant role in computer graphics, particularly in 3D graphics rendering and 3D
simulations. Examples include screen-to-world ray casting, world-to-subspace-to-world object transformations, and
physical simulations.

Matrix inverses in MIMO wireless communication
Matrix inversion also play a significant role in the MIMO (Multiple-Input, Multiple-Output) technology in wireless
communications. The MIMO system consists of N transmit and M receive antennas. Unique signals, occupying the
same frequency band, are sent via N transmit antennas and are received via M receive antennas. The signal arriving
at each receive antenna will be a linear combination of the N transmitted signals forming a NxM transmission matrix
H. It is crucial for the matrix H to be invertible for the receiver to be able to figure out the transmitted information.

Notes
[1] , Chapter 2, page 71 (http:/ / books. google. com/ books?id=Gv4pCVyoUVYC& pg=PA71)
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009, §28.2.
[3] Ran Raz. On the complexity of matrix product. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing. ACM

Press, 2002. .
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Eigenvalues and eigenvectors

In this shear mapping the red arrow changes direction but the blue arrow
does not. The blue arrow is an eigenvector of this shear mapping, and

since its length is unchanged its eigenvalue is 1.

An eigenvector of a square matrix is a
non-zero vector that, when the matrix is
multiplied by , yields a constant multiple of ,
the multiplier being commonly denoted by .
That is:

(Because this equation uses post-multiplication by
, it describes a right eigenvector.)

The number is called the eigenvalue of 
corresponding to .[1]

In analytic geometry, for example, a three-element
vector may be seen as an arrow in
three-dimensional space starting at the origin. In
that case, an eigenvector is an arrow whose
direction is either preserved or exactly reversed
after multiplication by . The corresponding eigenvalue determines how the length of the arrow is changed by the
operation, and whether its direction is reversed or not, determined by whether the eigenvalue is negative or positive.
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In abstract linear algebra, these concepts are naturally extended to more general situations, where the set of real
scalar factors is replaced by any field of scalars (such as algebraic or complex numbers); the set of Cartesian vectors

is replaced by any vector space (such as the continuous functions, the polynomials or the trigonometric series),
and matrix multiplication is replaced by any linear operator that maps vectors to vectors (such as the derivative from
calculus). In such cases, the "vector" in "eigenvector" may be replaced by a more specific term, such as
"eigenfunction", "eigenmode", "eigenface", or "eigenstate". Thus, for example, the exponential function

is an eigenfunction of the derivative operator " ", with eigenvalue , since its derivative is
.

The set of all eigenvectors of a matrix (or linear operator), each paired with its corresponding eigenvalue, is called
the eigensystem of that matrix.[2] Any multiple of an eigenvector is also an eigenvector, with the same eigenvalue.
An eigenspace of a matrix is the set of all eigenvectors with the same eigenvalue, together with the zero vector.
An eigenbasis for is any basis for the set of all vectors that consists of linearly independent eigenvectors of .
Not every matrix has an eigenbasis, but every symmetric matrix does.
The terms characteristic vector, characteristic value, and characteristic space are also used for these concepts.
The prefix eigen- is adopted from the German word eigen for "self-" or "unique to", "peculiar to", or "belonging to."
Eigenvalues and eigenvectors have many applications in both pure and applied mathematics. They are used in matrix
factorization, in quantum mechanics, and in many other areas.

Definition

Eigenvectors and eigenvalues of a real matrix

Matrix acts by stretching the vector , not changing its
direction, so is an eigenvector of .

In many contexts, a vector can be assumed to be a list
of real numbers (called elements), written vertically
with brackets around the entire list, such as the vectors
u and v below. Two vectors are said to be scalar
multiples of each other (also called parallel or
collinear) if they have the same number of elements,
and if every element of one vector is obtained by
multiplying each corresponding element in the other
vector by the same number (known as a scaling factor,
or a scalar). For example, the vectors

and 

are scalar multiples of each other, because each element
of is −20 times the corresponding element of .

A vector with three elements, like or above, may represent a point in three-dimensional space, relative to some
Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at the origin of the
coordinate system. In this case, the condition " is parallel to " means that the two arrows lie on the same
straight line, and may differ only in length and direction along that line.

If we multiply any square matrix with rows and columns by such a vector , the result will be another
vector , also with rows and one column. That is,
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is mapped to 

where, for each index ,

In general, if are not all zeros, the vectors and will not be parallel. When they are parallel (that is, when
there is some real number such that ) we say that is an eigenvector of . In that case, the scale
factor is said to be the eigenvalue corresponding to that eigenvector.
In particular, multiplication by a 3×3 matrix may change both the direction and the magnitude of an arrow in
three-dimensional space. However, if is an eigenvector of with eigenvalue , the operation may only change
its length, and either keep its direction or flip it (make the arrow point in the exact opposite direction). Specifically,
the length of the arrow will increase if , remain the same if , and decrease it if .
Moreover, the direction will be precisely the same if , and flipped if . If , then the length of
the arrow becomes zero.

An example

The transformation matrix preserves the

direction of vectors parallel to (in blue)

and (in violet). The points that lie on the

line through the origin, parallel to an eigenvector,
remain on the line after the transformation. The

vectors in red are not eigenvectors, therefore their
direction is altered by the transformation. See
also: An extended version, showing all four

quadrants.

For the transformation matrix

the vector

is an eigenvector with eigenvalue 2. Indeed,

On the other hand the vector
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is not an eigenvector, since

and this vector is not a multiple of the original vector .

Another example

For the matrix

we have

Therefore, the vectors and are eigenvectors of corresponding to the eigenvalues 1 and 3
respectively. (Here the symbol indicates matrix transposition, in this case turning the row vectors into column
vectors.)

Trivial cases

The identity matrix (whose general element is 1 if , and 0 otherwise) maps every vector to itself.
Therefore, every vector is an eigenvector of , with eigenvalue 1.
More generally, if is a diagonal matrix (with whenever ), and is a vector parallel to axis 
(that is, , and if ), then where . That is, the eigenvalues of a diagonal
matrix are the elements of its main diagonal. This is trivially the case of any 1 ×1 matrix.

General definition
The concept of eigenvectors and eigenvalues extends naturally to abstract linear transformations on abstract vector
spaces. Namely, let be any vector space over some field of scalars, and let be a linear transformation
mapping into . We say that a non-zero vector of is an eigenvector of if (and only if) there is a scalar

in such that

.
This equation is called the eigenvalue equation for , and the scalar is the eigenvalue of corresponding to
the eigenvector . Note that means the result of applying the operator to the vector , while means
the product of the scalar by .[3]

The matrix-specific definition is a special case of this abstract definition. Namely, the vector space is the set of all
column vectors of a certain size ×1, and is the linear transformation that consists in multiplying a vector by the
given matrix .
Some authors allow to be the zero vector in the definition of eigenvector. This is reasonable as long as we define 
eigenvalues and eigenvectors carefully: If we would like the zero vector to be an eigenvector, then we must first
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define an eigenvalue of as a scalar in such that there is a nonzero vector in with . We then define an eigenvector to be
a vector in such that there is an eigenvalue in with . This way, we ensure that it is not the case that every scalar is an
eigenvalue corresponding to the zero vector.

Eigenspace and spectrum
If is an eigenvector of , with eigenvalue , then any scalar multiple of with nonzero is also an
eigenvector with eigenvalue , since . Moreover, if and are
eigenvectors with the same eigenvalue , then is also an eigenvector with the same eigenvalue .
Therefore, the set of all eigenvectors with the same eigenvalue , together with the zero vector, is a linear subspace
of , called the eigenspace of associated to .[4] If that subspace has dimension 1, it is sometimes called an
eigenline.[5]

The geometric multiplicity of an eigenvalue is the dimension of the eigenspace associated to , i.e.
number of linearly independent eigenvectors with that eigenvalue.
The eigenspaces of T always form a direct sum (and as a consequence any family of eigenvectors for different
eigenvalues is always linearly independent). Therefore the sum of the dimensions of the eigenspaces cannot exceed
the dimension n of the space on which T operates, and in particular there cannot be more than n distinct
eigenvalues.[6]

Any subspace spanned by eigenvectors of is an invariant subspace of , and the restriction of T to such a
subspace is diagonalizable.
The set of eigenvalues of is sometimes called the spectrum of .

Eigenbasis
An eigenbasis for a linear operator that operates on a vector space is a basis for that consists entirely of
eigenvectors of (possibly with different eigenvalues). Such a basis exists precisely if the direct sum of the
eigenspaces equals the whole space, in which case one can take the union of bases chosen in each of the eigenspaces
as eigenbasis. The matrix of T in a given basis is diagonal precisely when that basis is an eigenbasis for T, and for
this reason T is called diagonalizable if it admits an eigenbasis.

Generalizations to infinite-dimensional spaces
The definition of eigenvalue of a linear transformation remains valid even if the underlying space is an infinite
dimensional Hilbert or Banach space. Namely, a scalar is an eigenvalue if and only if there is some nonzero
vector such that .

Eigenfunctions
A widely used class of linear operators acting on infinite dimensional spaces are the differential operators on
function spaces. Let be a linear differential operator in on the space of infinitely differentiable real
functions of a real argument . The eigenvalue equation for is the differential equation

The functions that satisfy this equation are commonly called eigenfunctions. For the derivative operator , an
eigenfunction is a function that, when differentiated, yields a constant times the original function. If is zero, the
generic solution is a constant function. If is non-zero, the solution is an exponential function

Eigenfunctions are an essential tool in the solution of differential equations and many other applied and theoretical 
fields. For instance, the exponential functions are eigenfunctions of any shift invariant linear operator. This fact is
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the basis of powerful Fourier transform methods for solving all sorts of problems.

Spectral theory

If is an eigenvalue of , then the operator is not one-to-one, and therefore its inverse is
not defined. The converse is true for finite-dimensional vector spaces, but not for infinite-dimensional ones. In
general, the operator may not have an inverse, even if is not an eigenvalue.
For this reason, in functional analysis one defines the spectrum of a linear operator as the set of all scalars for
which the operator has no bounded inverse. Thus the spectrum of an operator always contains all its
eigenvalues, but is not limited to them.

Associative algebras and representation theory
More algebraically, rather than generalizing the vector space to an infinite dimensional space, one can generalize the
algebraic object that is acting on the space, replacing a single operator acting on a vector space with an algebra
representation – an associative algebra acting on a module. The study of such actions is the field of representation
theory.
A closer analog of eigenvalues is given by the representation-theoretical concept of weight, with the analogs of
eigenvectors and eigenspaces being weight vectors and weight spaces.

Eigenvalues and eigenvectors of matrices

Characteristic polynomial
The eigenvalue equation for a matrix is

which is equivalent to

where is the  identity matrix. It is a fundamental result of linear algebra that an equation has a
non-zero solution if, and only if, the determinant of the matrix is zero. It follows that the
eigenvalues of are precisely the real numbers that satisfy the equation

The left-hand side of this equation can be seen (using Leibniz' rule for the determinant) to be a polynomial function
of the variable . The degree of this polynomial is , the order of the matrix. Its coefficients depend on the
entries of , except that its term of degree is always . This polynomial is called the characteristic

polynomial of ; and the above equation is called the characteristic equation (or, less often, the secular equation)
of .
For example, let be the matrix

The characteristic polynomial of is

which is
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The roots of this polynomial are 2, 1, and 11. Indeed these are the only three eigenvalues of , corresponding to
the eigenvectors  and (or any non-zero multiples thereof).

In the real domain

Since the eigenvalues are roots of the characteristic polynomial, an matrix has at most eigenvalues. If the
matrix has real entries, the coefficients of the characteristic polynomial are all real; but it may have fewer than 
real roots, or no real roots at all.
For example, consider the cyclic permutation matrix

This matrix shifts the coordinates of the vector up by one position, and moves the first coordinate to the bottom. Its
characteristic polynomial is which has one real root . Any vector with three equal non-zero
elements is an eigenvector for this eigenvalue. For example,

In the complex domain

The fundamental theorem of algebra implies that the characteristic polynomial of an matrix , being a
polynomial of degree , has exactly complex roots. More precisely, it can be factored into the product of 
linear terms,

where each is a complex number. The numbers , , ... , (which may not be all distinct) are roots of the
polynomial, and are precisely the eigenvalues of .
Even if the entries of are all real numbers, the eigenvalues may still have non-zero imaginary parts (and the
elements of the corresponding eigenvectors will therefore also have non-zero imaginary parts). Also, the eigenvalues
may be irrational numbers even if all the entries of are rational numbers, or all are integers. However, if the
entries of are algebraic numbers (which include the rationals), the eigenvalues will be (complex) algebraic
numbers too.
The non-real roots of a real polynomial with real coefficients can be grouped into pairs of complex conjugate values,
namely with the two members of each pair having the same real part and imaginary parts that differ only in sign. If
the degree is odd, then by the intermediate value theorem at least one of the roots will be real. Therefore, any real
matrix with odd order will have at least one real eigenvalue; whereas a real matrix with even order may have no real
eigenvalues.

In the example of the 3×3 cyclic permutation matrix , above, the characteristic polynomial has two
additional non-real roots, namely

and ,
where is the imaginary unit. Note that , , and . Then

and 

https://en.wikipedia.org/w/index.php?title=Permutation_matrix
https://en.wikipedia.org/w/index.php?title=Fundamental_theorem_of_algebra
https://en.wikipedia.org/w/index.php?title=Root
https://en.wikipedia.org/w/index.php?title=Factorization
https://en.wikipedia.org/w/index.php?title=Irrational_number
https://en.wikipedia.org/w/index.php?title=Rational_number
https://en.wikipedia.org/w/index.php?title=Algebraic_number
https://en.wikipedia.org/w/index.php?title=Complex_conjugate
https://en.wikipedia.org/w/index.php?title=Intermediate_value_theorem


Eigenvalues and eigenvectors 305

Therefore, the vectors and are eigenvectors of , with eigenvalues , and ,
respectively.

Algebraic multiplicities

Let be an eigenvalue of an matrix . The algebraic multiplicity of is its multiplicity as a
root of the characteristic polynomial, that is, the largest integer such that  divides evenly that
polynomial.
Like the geometric multiplicity , the algebraic multiplicity is an integer between 1 and ; and the sum

of over all distinct eigenvalues also cannot exceed . If complex eigenvalues are considered, is
exactly .
It can be proved that the geometric multiplicity of an eigenvalue never exceeds its algebraic multiplicity

. Therefore, is at most .
If , then is said to be a semisimple eigenvalue.

Example

For the matrix: 

the characteristic polynomial of is

,

being the product of the diagonal with a lower triangular matrix.
The roots of this polynomial, and hence the eigenvalues, are 2 and 3. The algebraic multiplicity of each eigenvalue is
2; in other words they are both double roots. On the other hand, the geometric multiplicity of the eigenvalue 2 is only
1, because its eigenspace is spanned by the vector , and is therefore 1 dimensional. Similarly, the
geometric multiplicity of the eigenvalue 3 is 1 because its eigenspace is spanned by . Hence, the total
algebraic multiplicity of A, denoted , is 4, which is the most it could be for a 4 by 4 matrix. The geometric
multiplicity is 2, which is the smallest it could be for a matrix which has two distinct eigenvalues.

Diagonalization and eigendecomposition
If the sum of the geometric multiplicities of all eigenvalues is exactly , then has a set of linearly
independent eigenvectors. Let be a square matrix whose columns are those eigenvectors, in any order. Then we
will have , where is the diagonal matrix such that is the eigenvalue associated to column of

. Since the columns of are linearly independent, the matrix is invertible. Premultiplying both sides by
we get . By definition, therefore, the matrix is diagonalizable.

Conversely, if is diagonalizable, let be a non-singular square matrix such that is some diagonal
matrix . Multiplying both sides on the left by we get . Therefore each column of must be
an eigenvector of , whose eigenvalue is the corresponding element on the diagonal of . Since the columns of

must be linearly independent, it follows that . Thus is equal to if and only if is
diagonalizable.
If is diagonalizable, the space of all -element vectors can be decomposed into the direct sum of the 
eigenspaces of . This decomposition is called the eigendecomposition of , and it is preserved under change of
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coordinates.
A matrix that is not diagonalizable is said to be defective. For defective matrices, the notion of eigenvector can be
generalized to generalized eigenvectors, and that of diagonal matrix to a Jordan form matrix. Over an algebraically
closed field, any matrix has a Jordan form and therefore admits a basis of generalized eigenvectors, and a
decomposition into generalized eigenspaces

Further properties

Let be an arbitrary matrix of complex numbers with eigenvalues , , ... . (Here it is
understood that an eigenvalue with algebraic multiplicity occurs times in this list.) Then
• The trace of , defined as the sum of its diagonal elements, is also the sum of all eigenvalues:

.

• The determinant of is the product of all eigenvalues:

.

• The eigenvalues of the th power of , i.e. the eigenvalues of , for any positive integer , are

• The matrix is invertible if and only if all the eigenvalues are nonzero.
• If is invertible, then the eigenvalues of are 
• If is equal to its conjugate transpose (in other words, if is Hermitian), then every eigenvalue is real.

The same is true of any a symmetric real matrix. If is also positive-definite, positive-semidefinite,
negative-definite, or negative-semidefinite every eigenvalue is positive, non-negative, negative, or non-positive
respectively.

• Every eigenvalue of a unitary matrix has absolute value .

Left and right eigenvectors
The use of matrices with a single column (rather than a single row) to represent vectors is traditional in many
disciplines. For that reason, the word "eigenvector" almost always means a right eigenvector, namely a column
vector that must be placed to the right of the matrix in the defining equation

.
There may be also single-row vectors that are unchanged when they occur on the left side of a product with a square
matrix ; that is, which satisfy the equation

Any such row vector is called a left eigenvector of .
The left eigenvectors of are transposes of the right eigenvectors of the transposed matrix , since their
defining equation is equivalent to

It follows that, if is Hermitian, its left and right eigenvectors are complex conjugates. In particular if is a real
symmetric matrix, they are the same except for transposition.
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Calculation

Computing the eigenvalues
The eigenvalues of a matrix can be determined by finding the roots of the characteristic polynomial. Explicit
algebraic formulas for the roots of a polynomial exist only if the degree is 4 or less. According to the
Abel–Ruffini theorem there is no general, explicit and exact algebraic formula for the roots of a polynomial with
degree 5 or more.
It turns out that any polynomial with degree is the characteristic polynomial of some companion matrix of order

. Therefore, for matrices of order 5 or more, the eigenvalues and eigenvectors cannot be obtained by an explicit
algebraic formula, and must therefore be computed by approximate numerical methods.
In theory, the coefficients of the characteristic polynomial can be computed exactly, since they are sums of products
of matrix elements; and there are algorithms that can find all the roots of a polynomial of arbitrary degree to any
required accuracy. However, this approach is not viable in practice because the coefficients would be contaminated
by unavoidable round-off errors, and the roots of a polynomial can be an extremely sensitive function of the
coefficients (as exemplified by Wilkinson's polynomial).
Efficient, accurate methods to compute eigenvalues and eigenvectors of arbitrary matrices were not known until the
advent of the QR algorithm in 1961. Combining the Householder transformation with the LU decomposition results
in an algorithm with better convergence than the QR algorithm.[citation needed] For large Hermitian sparse matrices,
the Lanczos algorithm is one example of an efficient iterative method to compute eigenvalues and eigenvectors,
among several other possibilities.

Computing the eigenvectors
Once the (exact) value of an eigenvalue is known, the corresponding eigenvectors can be found by finding non-zero
solutions of the eigenvalue equation, that becomes a system of linear equations with known coefficients. For
example, once it is known that 6 is an eigenvalue of the matrix

we can find its eigenvectors by solving the equation , that is

This matrix equation is equivalent to two linear equations

that is 

Both equations reduce to the single linear equation . Therefore, any vector of the form , for any
non-zero real number , is an eigenvector of with eigenvalue .
The matrix above has another eigenvalue . A similar calculation shows that the corresponding
eigenvectors are the non-zero solutions of , that is, any vector of the form , for any
non-zero real number .
Some numeric methods that compute the eigenvalues of a matrix also determine a set of corresponding eigenvectors
as a by-product of the computation.
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History
Eigenvalues are often introduced in the context of linear algebra or matrix theory. Historically, however, they arose
in the study of quadratic forms and differential equations.
In the 18th century Euler studied the rotational motion of a rigid body and discovered the importance of the principal
axes. Lagrange realized that the principal axes are the eigenvectors of the inertia matrix.[7] In the early 19th century,
Cauchy saw how their work could be used to classify the quadric surfaces, and generalized it to arbitrary
dimensions.[8] Cauchy also coined the term racine caractéristique (characteristic root) for what is now called
eigenvalue; his term survives in characteristic equation.[9]

Fourier used the work of Laplace and Lagrange to solve the heat equation by separation of variables in his famous
1822 book Théorie analytique de la chaleur.[10] Sturm developed Fourier's ideas further and brought them to the
attention of Cauchy, who combined them with his own ideas and arrived at the fact that real symmetric matrices
have real eigenvalues. This was extended by Hermite in 1855 to what are now called Hermitian matrices. Around the
same time, Brioschi proved that the eigenvalues of orthogonal matrices lie on the unit circle, and Clebsch found the
corresponding result for skew-symmetric matrices. Finally, Weierstrass clarified an important aspect in the stability
theory started by Laplace by realizing that defective matrices can cause instability.
In the meantime, Liouville studied eigenvalue problems similar to those of Sturm; the discipline that grew out of
their work is now called Sturm–Liouville theory.[11] Schwarz studied the first eigenvalue of Laplace's equation on
general domains towards the end of the 19th century, while Poincaré studied Poisson's equation a few years later.[12]

At the start of the 20th century, Hilbert studied the eigenvalues of integral operators by viewing the operators as
infinite matrices.[13] He was the first to use the German word eigen to denote eigenvalues and eigenvectors in 1904,
though he may have been following a related usage by Helmholtz. For some time, the standard term in English was
"proper value", but the more distinctive term "eigenvalue" is standard today.[14]

The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Von Mises
published the power method. One of the most popular methods today, the QR algorithm, was proposed
independently by John G.F. Francis[15] and Vera Kublanovskaya[16] in 1961.[17]

Applications

Eigenvalues of geometric transformations
The following table presents some example transformations in the plane along with their 2×2 matrices, eigenvalues,
and eigenvectors.

scaling unequal scaling rotation horizontal shear hyperbolic rotation

illustration

matrix

characteristic
polynomial

https://en.wikipedia.org/w/index.php?title=Linear_algebra
https://en.wikipedia.org/w/index.php?title=Quadratic_form
https://en.wikipedia.org/w/index.php?title=Differential_equation
https://en.wikipedia.org/w/index.php?title=Leonhard_Euler
https://en.wikipedia.org/w/index.php?title=Rigid_body
https://en.wikipedia.org/w/index.php?title=Principal_axis_%28mechanics%29
https://en.wikipedia.org/w/index.php?title=Principal_axis_%28mechanics%29
https://en.wikipedia.org/w/index.php?title=Lagrange
https://en.wikipedia.org/w/index.php?title=Augustin_Louis_Cauchy
https://en.wikipedia.org/w/index.php?title=Quadric_surface
https://en.wikipedia.org/w/index.php?title=Characteristic_polynomial%23Characteristic_equation
https://en.wikipedia.org/w/index.php?title=Joseph_Fourier
https://en.wikipedia.org/w/index.php?title=Heat_equation
https://en.wikipedia.org/w/index.php?title=Separation_of_variables
https://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur
https://en.wikipedia.org/w/index.php?title=Jacques_Charles_Fran%C3%A7ois_Sturm
https://en.wikipedia.org/w/index.php?title=Charles_Hermite
https://en.wikipedia.org/w/index.php?title=Hermitian_matrix
https://en.wikipedia.org/w/index.php?title=Francesco_Brioschi
https://en.wikipedia.org/w/index.php?title=Orthogonal_matrix
https://en.wikipedia.org/w/index.php?title=Unit_circle
https://en.wikipedia.org/w/index.php?title=Alfred_Clebsch
https://en.wikipedia.org/w/index.php?title=Skew-symmetric_matrix
https://en.wikipedia.org/w/index.php?title=Karl_Weierstrass
https://en.wikipedia.org/w/index.php?title=Stability_theory
https://en.wikipedia.org/w/index.php?title=Stability_theory
https://en.wikipedia.org/w/index.php?title=Defective_matrix
https://en.wikipedia.org/w/index.php?title=Joseph_Liouville
https://en.wikipedia.org/w/index.php?title=Sturm%E2%80%93Liouville_theory
https://en.wikipedia.org/w/index.php?title=Hermann_Schwarz
https://en.wikipedia.org/w/index.php?title=Laplace%27s_equation
https://en.wikipedia.org/w/index.php?title=Henri_Poincar%C3%A9
https://en.wikipedia.org/w/index.php?title=Poisson%27s_equation
https://en.wikipedia.org/w/index.php?title=David_Hilbert
https://en.wikipedia.org/w/index.php?title=Integral_operator
https://en.wikipedia.org/w/index.php?title=German_language
https://en.wikipedia.org/w/index.php?title=Helmholtz
https://en.wikipedia.org/w/index.php?title=Richard_Edler_von_Mises
https://en.wikipedia.org/w/index.php?title=Power_method
https://en.wikipedia.org/w/index.php?title=QR_algorithm
https://en.wikipedia.org/w/index.php?title=John_G.F._Francis
https://en.wikipedia.org/w/index.php?title=Vera_Kublanovskaya
https://en.wikipedia.org/w/index.php?title=Scaling_%28geometry%29
https://en.wikipedia.org/w/index.php?title=Rotation_%28geometry%29
https://en.wikipedia.org/w/index.php?title=Shear_mapping
https://en.wikipedia.org/w/index.php?title=Hyperbolic_rotation
https://en.wikipedia.org/w/index.php?title=File:Homothety_in_two_dim.svg
https://en.wikipedia.org/w/index.php?title=File:Unequal_scaling.svg
https://en.wikipedia.org/w/index.php?title=File:Rotation.png
https://en.wikipedia.org/w/index.php?title=File%3AShear.svg
https://en.wikipedia.org/w/index.php?title=File:Squeeze_r%3D1.5.svg


Eigenvalues and eigenvectors 309

eigenvalues 
,

algebraic multipl.

geometric
multipl.

eigenvectors All non-zero vectors

Note that the characteristic equation for a rotation is a quadratic equation with discriminant ,
which is a negative number whenever is not an integer multiple of 180°. Therefore, except for these special cases,
the two eigenvalues are complex numbers, ; and all eigenvectors have non-real entries. Indeed,
except for those special cases, a rotation changes the direction of every nonzero vector in the plane.

Schrödinger equation

The wavefunctions associated with the bound states of an electron in a
hydrogen atom can be seen as the eigenvectors of the hydrogen atom
Hamiltonian as well as of the angular momentum operator. They are
associated with eigenvalues interpreted as their energies (increasing

downward: ) and angular momentum (increasing
across: s, p, d, ...). The illustration shows the square of the absolute value

of the wavefunctions. Brighter areas correspond to higher probability
density for a position measurement. The center of each figure is the atomic

nucleus, a proton.

An example of an eigenvalue equation where the
transformation is represented in terms of a
differential operator is the time-independent
Schrödinger equation in quantum mechanics:

where , the Hamiltonian, is a second-order
differential operator and , the wavefunction,
is one of its eigenfunctions corresponding to the
eigenvalue , interpreted as its energy.
However, in the case where one is interested only
in the bound state solutions of the Schrödinger
equation, one looks for within the space of
square integrable functions. Since this space is a
Hilbert space with a well-defined scalar product,
one can introduce a basis set in which and

can be represented as a one-dimensional array
and a matrix respectively. This allows one to
represent the Schrödinger equation in a matrix
form.
Bra-ket notation is often used in this context. A
vector, which represents a state of the system, in
the Hilbert space of square integrable functions is
represented by . In this notation, the
Schrödinger equation is:

where is an eigenstate of . It is a self adjoint operator, the infinite dimensional analog of Hermitian
matrices (see Observable). As in the matrix case, in the equation above is understood to be the vector
obtained by application of the transformation to .
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Molecular orbitals
In quantum mechanics, and in particular in atomic and molecular physics, within the Hartree–Fock theory, the
atomic and molecular orbitals can be defined by the eigenvectors of the Fock operator. The corresponding
eigenvalues are interpreted as ionization potentials via Koopmans' theorem. In this case, the term eigenvector is used
in a somewhat more general meaning, since the Fock operator is explicitly dependent on the orbitals and their
eigenvalues. If one wants to underline this aspect one speaks of nonlinear eigenvalue problem. Such equations are
usually solved by an iteration procedure, called in this case self-consistent field method. In quantum chemistry, one
often represents the Hartree–Fock equation in a non-orthogonal basis set. This particular representation is a
generalized eigenvalue problem called Roothaan equations.

Geology and glaciology
In geology, especially in the study of glacial till, eigenvectors and eigenvalues are used as a method by which a mass
of information of a clast fabric's constituents' orientation and dip can be summarized in a 3-D space by six numbers.
In the field, a geologist may collect such data for hundreds or thousands of clasts in a soil sample, which can only be
compared graphically such as in a Tri-Plot (Sneed and Folk) diagram, or as a Stereonet on a Wulff Net.
The output for the orientation tensor is in the three orthogonal (perpendicular) axes of space. The three eigenvectors
are ordered by their eigenvalues ;[18] then is the primary orientation/dip of clast,

is the secondary and is the tertiary, in terms of strength. The clast orientation is defined as the direction of the
eigenvector, on a compass rose of 360°. Dip is measured as the eigenvalue, the modulus of the tensor: this is valued
from 0° (no dip) to 90° (vertical). The relative values of , , and are dictated by the nature of the
sediment's fabric. If , the fabric is said to be isotropic. If , the fabric is said to
be planar. If , the fabric is said to be linear.

Principal components analysis

PCA of the multivariate Gaussian distribution
centered at with a standard deviation of

3 in roughly the  direction

and of 1 in the orthogonal direction. The vectors
shown are unit eigenvectors of the (symmetric,
positive-semidefinite) covariance matrix scaled

by the square root of the corresponding
eigenvalue. (Just as in the one-dimensional case,

the square root is taken because the standard
deviation is more readily visualized than the

variance.

The eigendecomposition of a symmetric positive semidefinite (PSD)
matrix yields an orthogonal basis of eigenvectors, each of which has a
nonnegative eigenvalue. The orthogonal decomposition of a PSD
matrix is used in multivariate analysis, where the sample covariance
matrices are PSD. This orthogonal decomposition is called principal
components analysis (PCA) in statistics. PCA studies linear relations
among variables. PCA is performed on the covariance matrix or the
correlation matrix (in which each variable is scaled to have its sample
variance equal to one). For the covariance or correlation matrix, the
eigenvectors correspond to principal components and the eigenvalues
to the variance explained by the principal components. Principal
component analysis of the correlation matrix provides an orthonormal
eigen-basis for the space of the observed data: In this basis, the largest
eigenvalues correspond to the principal-components that are associated
with most of the covariability among a number of observed data.

Principal component analysis is used to study large data sets, such as
those encountered in data mining, chemical research, psychology, and
in marketing. PCA is popular especially in psychology, in the field of
psychometrics. In Q methodology, the eigenvalues of the correlation
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matrix determine the Q-methodologist's judgment of practical significance (which differs from the statistical
significance of hypothesis testing; cf. criteria for determining the number of factors). More generally, principal
component analysis can be used as a method of factor analysis in structural equation modeling.

Vibration analysis

1st lateral bending (See vibration for more types of vibration)

Eigenvalue problems occur naturally in the vibration analysis
of mechanical structures with many degrees of freedom. The
eigenvalues are used to determine the natural frequencies (or
eigenfrequencies) of vibration, and the eigenvectors
determine the shapes of these vibrational modes. In
particular, undamped vibration is governed by

or

that is, acceleration is proportional to position (i.e., we expect to be sinusoidal in time).
In dimensions, becomes a mass matrix and a stiffness matrix. Admissible solutions are then a linear
combination of solutions to the generalized eigenvalue problem

where is the eigenvalue and is the angular frequency. Note that the principal vibration modes are different
from the principal compliance modes, which are the eigenvectors of alone. Furthermore, damped vibration,
governed by

leads to what is called a so-called quadratic eigenvalue problem,

This can be reduced to a generalized eigenvalue problem by clever use of algebra at the cost of solving a larger
system.
The orthogonality properties of the eigenvectors allows decoupling of the differential equations so that the system
can be represented as linear summation of the eigenvectors. The eigenvalue problem of complex structures is often
solved using finite element analysis, but neatly generalize the solution to scalar-valued vibration problems.
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Eigenfaces

Eigenfaces as examples of eigenvectors

In image processing, processed images of faces can be seen as
vectors whose components are the brightnesses of each pixel. The
dimension of this vector space is the number of pixels. The
eigenvectors of the covariance matrix associated with a large set of
normalized pictures of faces are called eigenfaces; this is an
example of principal components analysis. They are very useful
for expressing any face image as a linear combination of some of
them. In the facial recognition branch of biometrics, eigenfaces
provide a means of applying data compression to faces for
identification purposes. Research related to eigen vision systems
determining hand gestures has also been made.

Similar to this concept, eigenvoices represent the general direction
of variability in human pronunciations of a particular utterance,
such as a word in a language. Based on a linear combination of
such eigenvoices, a new voice pronunciation of the word can be
constructed. These concepts have been found useful in automatic
speech recognition systems, for speaker adaptation.

Tensor of moment of inertia
In mechanics, the eigenvectors of the moment of inertia tensor define the principal axes of a rigid body. The tensor
of moment of inertia is a key quantity required to determine the rotation of a rigid body around its center of mass.

Stress tensor
In solid mechanics, the stress tensor is symmetric and so can be decomposed into a diagonal tensor with the
eigenvalues on the diagonal and eigenvectors as a basis. Because it is diagonal, in this orientation, the stress tensor
has no shear components; the components it does have are the principal components.

Eigenvalues of a graph
In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix , or
(increasingly) of the graph's Laplacian matrix (see also Discrete Laplace operator), which is either 
(sometimes called the combinatorial Laplacian) or (sometimes called the normalized

Laplacian), where is a diagonal matrix with equal to the degree of vertex , and in , the th
diagonal entry is . The th principal eigenvector of a graph is defined as either the eigenvector
corresponding to the th largest or th smallest eigenvalue of the Laplacian. The first principal eigenvector of the
graph is also referred to merely as the principal eigenvector.
The principal eigenvector is used to measure the centrality of its vertices. An example is Google's PageRank
algorithm. The principal eigenvector of a modified adjacency matrix of the World Wide Web graph gives the page
ranks as its components. This vector corresponds to the stationary distribution of the Markov chain represented by
the row-normalized adjacency matrix; however, the adjacency matrix must first be modified to ensure a stationary
distribution exists. The second smallest eigenvector can be used to partition the graph into clusters, via spectral
clustering. Other methods are also available for clustering.
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Basic reproduction number
See Basic reproduction number

The basic reproduction number ( ) is a fundamental number in the study of how infectious diseases spread. If
one infectious person is put into a population of completely susceptible people, then is the average number of
people that one typical infectious person will infect. The generation time of an infection is the time, , from one
person becoming infected to the next person becoming infected. In a heterogenous population, the next generation
matrix defines how many people in the population will become infected after time has passed. is then the
largest eigenvalue of the next generation matrix.

Notes
[1] Wolfram Research, Inc. (2010) Eigenvector (http:/ / mathworld. wolfram. com/ Eigenvector. html). Accessed on 2010-01-29.
[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007), Numerical Recipes: The Art of Scientific Computing,

Chapter 11: Eigensystems., pages=563–597. Third edition, Cambridge University Press. ISBN 9780521880688 (http:/ / www. nr. com/ )
[3][3] See ;
[4][4] Lemma for the eigenspace
[5] Schaum's Easy Outline of Linear Algebra (http:/ / books. google. com/ books?id=pkESXAcIiCQC& pg=PA111), p. 111
[6] For a proof of this lemma, see ; ; ; ; and Lemma for linear independence of eigenvectors
[7][7] See
[8][8] See
[9][9] See
[10][10] See
[11][11] See
[12][12] See
[13][13] See
[14][14] See
[15][15] and
[16][16] . Also published in:
[17][17] See ;
[18] Stereo32 software (http:/ / www. ruhr-uni-bochum. de/ hardrock/ downloads. htm)
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System of linear equations

A linear system in three variables determines a
collection of planes. The intersection point is the

solution.

In mathematics, a system of linear equations (or linear system) is a
collection of linear equations involving the same set of variables. For
example,

is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of numbers
to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by

since it makes all three equations valid.[1] The word "system" indicates that the equations are to be considered
collectively, rather than individually.
In mathematics, the theory of linear systems is the basis and a fundamental part of linear algebra, a subject which is
used in most parts of modern mathematics. Computational algorithms for finding the solutions are an important part
of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and
economics. A system of non-linear equations can often be approximated by a linear system (see linearization), a
helpful technique when making a mathematical model or computer simulation of a relatively complex system.
Very often, the coefficients of the equations are real or complex numbers and the solutions are searched in the same
set of numbers, but the theory and the algorithms apply for coefficients and solutions in any field. For solutions in an
integral domain like the ring of the integers, or in other algebraic structures, other theories have been developed, see
Linear equation over a ring. Integer linear programming is a collection of method for finding the "best" integer
solution (when there are many). Gröbner basis theory provides algorithms when coefficients and unknowns are
polynomials. Also tropical geometry is an example of linear algebra in a more exotic structure.
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Elementary example
The simplest kind of linear system involves two equations and two variables:

One method for solving such a system is as follows. First, solve the top equation for in terms of :

Now substitute this expression for x into the bottom equation:

This results in a single equation involving only the variable . Solving gives , and substituting this back
into the equation for yields . This method generalizes to systems with additional variables (see
"elimination of variables" below, or the article on elementary algebra.)

General form
A general system of m linear equations with n unknowns can be written as

Here are the unknowns, are the coefficients of the system, and
are the constant terms.

Often the coefficients and unknowns are real or complex numbers, but integers and rational numbers are also seen,
as are polynomials and elements of an abstract algebraic structure.

Vector equation
One extremely helpful view is that each unknown is a weight for a column vector in a linear combination.

This allows all the language and theory of vector spaces (or more generally, modules) to be brought to bear. For
example, the collection of all possible linear combinations of the vectors on the left-hand side is called their span,
and the equations have a solution just when the right-hand vector is within that span. If every vector within that span
has exactly one expression as a linear combination of the given left-hand vectors, then any solution is unique. In any
event, the span has a basis of linearly independent vectors that do guarantee exactly one expression; and the number
of vectors in that basis (its dimension) cannot be larger than m or n, but it can be smaller. This is important because if
we have m independent vectors a solution is guaranteed regardless of the right-hand side, and otherwise not
guaranteed.
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Matrix equation
The vector equation is equivalent to a matrix equation of the form

where A is an m×n matrix, x is a column vector with n entries, and b is a column vector with m entries.

The number of vectors in a basis for the span is now expressed as the rank of the matrix.

Solution set

The solution set for the equations x − y = −1 and
3x + y = 9 is the single point (2, 3).

A solution of a linear system is an assignment of values to the
variables x1, x2, ..., xn such that each of the equations is satisfied. The
set of all possible solutions is called the solution set.

A linear system may behave in any one of three possible ways:
1. The system has infinitely many solutions.
2. The system has a single unique solution.
3. The system has no solution.

Geometric interpretation

For a system involving two variables (x and y), each linear equation
determines a line on the xy-plane. Because a solution to a linear system
must satisfy all of the equations, the solution set is the intersection of
these lines, and is hence either a line, a single point, or the empty set.

For three variables, each linear equation determines a plane in three-dimensional space, and the solution set is the
intersection of these planes. Thus the solution set may be a plane, a line, a single point, or the empty set.

For n variables, each linear equation determines a hyperplane in n-dimensional space. The solution set is the
intersection of these hyperplanes, which may be a flat of any dimension.
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General behavior

The solution set for two equations in three
variables is usually a line.

In general, the behavior of a linear system is determined by the
relationship between the number of equations and the number of
unknowns:
1. Usually, a system with fewer equations than unknowns has

infinitely many solutions or sometimes unique sparse solutions
(compressed sensing). Such a system is also known as an
underdetermined system.

2.2. Usually, a system with the same number of equations and
unknowns has a single unique solution.

3. Usually, a system with more equations than unknowns has no
solution. Such a system is also known as an overdetermined system.

In the first case, the dimension of the solution set is usually equal to n
− m, where n is the number of variables and m is the number of
equations.

The following pictures illustrate this trichotomy in the case of two variables:

One equation Two equations Three equations

The first system has infinitely many solutions, namely all of the points on the blue line. The second system has a
single unique solution, namely the intersection of the two lines. The third system has no solutions, since the three
lines share no common point.
Keep in mind that the pictures above show only the most common case. It is possible for a system of two equations
and two unknowns to have no solution (if the two lines are parallel), or for a system of three equations and two
unknowns to be solvable (if the three lines intersect at a single point). In general, a system of linear equations may
behave differently than expected if the equations are linearly dependent, or if two or more of the equations are
inconsistent.
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Properties

Independence
The equations of a linear system are independent if none of the equations can be derived algebraically from the
others. When the equations are independent, each equation contains new information about the variables, and
removing any of the equations increases the size of the solution set. For linear equations, logical independence is the
same as linear independence.

The equations x − 2y = −1, 3x + 5y = 8, and 4x +
3y = 7 are linearly dependent.

For example, the equations

are not independent — they are the same equation when scaled by a
factor of two, and they would produce identical graphs. This is an
example of equivalence in a system of linear equations.

For a more complicated example, the equations

are not independent, because the third equation is the sum of the other
two. Indeed, any one of these equations can be derived from the other
two, and any one of the equations can be removed without affecting the
solution set. The graphs of these equations are three lines that intersect
at a single point.

Consistency

The equations 3x + 2y = 6 and 3x + 2y = 12 are
inconsistent.

A linear system is consistent if it has a solution, and inconsistent
otherwise. When the system is inconsistent, it is possible to derive a
contradiction from the equations, that may always be rewritten such as
the statement 0 = 1.

For example, the equations

are inconsistent. In fact, by subtracting the first equation from the
second one and multiplying both sides of the result by 1/6, we get 0 =
1. The graphs of these equations on the xy-plane are a pair of parallel
lines.

It is possible for three linear equations to be inconsistent, even though
any two of them are consistent together. For example, the equations

are inconsistent. Adding the first two equations together gives 3x + 2y = 2, which can be subtracted from the third
equation to yield 0 = 1. Note that any two of these equations have a common solution. The same phenomenon can
occur for any number of equations.
In general, inconsistencies occur if the left-hand sides of the equations in a system are linearly dependent, and the
constant terms do not satisfy the dependence relation. A system of equations whose left-hand sides are linearly
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independent is always consistent.
Putting it another way, according to the Rouché–Capelli theorem, any system of equations (overdetermined or
otherwise) is inconsistent if the rank of the augmented matrix is greater than the rank of the coefficient matrix. If, on
the other hand, the ranks of these two matrices are equal, the system must have at least one solution. The solution is
unique if and only if the rank equals the number of variables. Otherwise the general solution has k free parameters
where k is the difference between the number of variables and the rank; hence in such a case there are an infinitude
of solutions. The rank of a system of equations can never be higher than [the number of variables] + 1, which means
that a system with any number of equations can always be reduced to a system that has a number of independent
equations that is maximum equal to [the number of variables] + 1.

Equivalence
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can
be derived algebraically from the equations in the first system, and vice-versa. Two systems are equivalent if either
both are inconsistent or each equation of any of them is a linear combination of the equations of the other one. It
follows that two linear systems are equivalent if and only if they have the same solution set.

Solving a linear system
There are several algorithms for solving a system of linear equations.

Describing the solution
When the solution set is finite, it is reduced to a single element. In this case, the unique solution is described by a
sequence of equations whose left hand sides are the names of the unknowns and right hand sides are the
corresponding values, for example . When an order on the unknowns has been fixed,
for example the alphabetical order the solution may be described as a vector of values, like for the
previous example.
It can be difficult to describe a set with infinite solutions. Typically, some of the variables are designated as free (or
independent, or as parameters), meaning that they are allowed to take any value, while the remaining variables are
dependent on the values of the free variables.
For example, consider the following system:

The solution set to this system can be described by the following equations:

Here z is the free variable, while x and y are dependent on z. Any point in the solution set can be obtained by first
choosing a value for z, and then computing the corresponding values for x and y.
Each free variable gives the solution space one degree of freedom, the number of which is equal to the dimension of
the solution set. For example, the solution set for the above equation is a line, since a point in the solution set can be
chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a plane, or
higher dimensional set.
Different choices for the free variables may lead to different descriptions of the same solution set. For example, the
solution to the above equations can alternatively be described as follows:

Here x is the free variable, and y and z are dependent.
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Elimination of variables
The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be
described as follows:
1.1. In the first equation, solve for one of the variables in terms of the others.
2.2. Plug this expression into the remaining equations. This yields a system of equations with one fewer equation and

one fewer unknown.
3.3. Continue until you have reduced the system to a single linear equation.
4.4. Solve this equation, and then back-substitute until the entire solution is found.
For example, consider the following system:

Solving the first equation for x gives x = 5 + 2z − 3y, and plugging this into the second and third equation yields

Solving the first of these equations for y yields y = 2 + 3z, and plugging this into the second equation yields z = 2.
We now have:

Substituting z = 2 into the second equation gives y = 8, and substituting z = 2 and y = 8 into the first equation yields x
= −15. Therefore, the solution set is the single point (x, y, z) = (−15, 8, 2).

Row reduction
In row reduction, the linear system is represented as an augmented matrix:

This matrix is then modified using elementary row operations until it reaches reduced row echelon form. There are
three types of elementary row operations:

Type 1: Swap the positions of two rows.
Type 2: Multiply a row by a nonzero scalar.
Type 3: Add to one row a scalar multiple of another.

Because these operations are reversible, the augmented matrix produced always represents a linear system that is
equivalent to the original.
There are several specific algorithms to row-reduce an augmented matrix, the simplest of which are Gaussian
elimination and Gauss-Jordan elimination. The following computation shows Gauss-Jordan elimination applied to
the matrix above:
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The last matrix is in reduced row echelon form, and represents the system x = −15, y = 8, z = 2. A comparison with
the example in the previous section on the algebraic elimination of variables shows that these two methods are in fact
the same; the difference lies in how the computations are written down.

Cramer's rule
Cramer's rule is an explicit formula for the solution of a system of linear equations, with each variable given by a
quotient of two determinants. For example, the solution to the system

is given by

For each variable, the denominator is the determinant of the matrix of coefficients, while the numerator is the
determinant of a matrix in which one column has been replaced by the vector of constant terms.
Though Cramer's rule is important theoretically, it has little practical value for large matrices, since the computation
of large determinants is somewhat cumbersome. (Indeed, large determinants are most easily computed using row
reduction.) Further, Cramer's rule has very poor numerical properties, making it unsuitable for solving even small
systems reliably, unless the operations are performed in rational arithmetic with unbounded precision.

Matrix solution
If the equation system is expressed in the matrix form , the entire solution set can also be expressed in
matrix form. If the matrix A is square (has m rows and n=m columns) and has full rank (all m rows are independent),
then the system has a unique solution given by

where is the inverse of A. More generally, regardless of whether m=n or not and regardless of the rank of A, all
solutions (if any exist) are given using the Moore-Penrose pseudoinverse of A, denoted , as follows:

where is a vector of free parameters that ranges over all possible n×1 vectors. A necessary and sufficient
condition for any solution(s) to exist is that the potential solution obtained using satisfy  — that
is, that If this condition does not hold, the equation system is inconsistent and has no solution. If the
condition holds, the system is consistent and at least one solution exists. For example, in the above-mentioned case
in which A is square and of full rank, simply equals and the general solution equation simplifies to

as previously stated, where has
completely dropped out of the solution, leaving only a single solution. In other cases, though, remains and hence
an infinitude of potential values of the free parameter vector give an infinitude of solutions of the equation.
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Other methods
While systems of three or four equations can be readily solved by hand, computers are often used for larger systems.
The standard algorithm for solving a system of linear equations is based on Gaussian elimination with some
modifications. Firstly, it is essential to avoid division by small numbers, which may lead to inaccurate results. This
can be done by reordering the equations if necessary, a process known as pivoting. Secondly, the algorithm does not
exactly do Gaussian elimination, but it computes the LU decomposition of the matrix A. This is mostly an
organizational tool, but it is much quicker if one has to solve several systems with the same matrix A but different
vectors b.
If the matrix A has some special structure, this can be exploited to obtain faster or more accurate algorithms. For
instance, systems with a symmetric positive definite matrix can be solved twice as fast with the Cholesky
decomposition. Levinson recursion is a fast method for Toeplitz matrices. Special methods exist also for matrices
with many zero elements (so-called sparse matrices), which appear often in applications.
A completely different approach is often taken for very large systems, which would otherwise take too much time or
memory. The idea is to start with an initial approximation to the solution (which does not have to be accurate at all),
and to change this approximation in several steps to bring it closer to the true solution. Once the approximation is
sufficiently accurate, this is taken to be the solution to the system. This leads to the class of iterative methods.

Homogeneous systems
A system of linear equations is homogeneous if all of the constant terms are zero:

A homogeneous system is equivalent to a matrix equation of the form

where A is an m × n matrix, x is a column vector with n entries, and 0 is the zero vector with m entries.

Solution set
Every homogeneous system has at least one solution, known as the zero solution (or trivial solution), which is
obtained by assigning the value of zero to each of the variables. If the system has a non-singular matrix (det(A) ≠ 0)
then it is also the only solution. If the system has a singular matrix then there is a solution set with an infinite number
of solutions. This solution set has the following additional properties:
1. If u and v are two vectors representing solutions to a homogeneous system, then the vector sum u + v is also a

solution to the system.
2. If u is a vector representing a solution to a homogeneous system, and r is any scalar, then ru is also a solution to

the system.
These are exactly the properties required for the solution set to be a linear subspace of Rn. In particular, the solution
set to a homogeneous system is the same as the null space of the corresponding matrix A.
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Relation to nonhomogeneous systems
There is a close relationship between the solutions to a linear system and the solutions to the corresponding
homogeneous system:

Specifically, if p is any specific solution to the linear system Ax = b, then the entire solution set can be described as

Geometrically, this says that the solution set for Ax = b is a translation of the solution set for Ax = 0. Specifically, the
flat for the first system can be obtained by translating the linear subspace for the homogeneous system by the vector
p.
This reasoning only applies if the system Ax = b has at least one solution. This occurs if and only if the vector b lies
in the image of the linear transformation A.

Notes
[1][1] Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of

the material in this article can be found in Lay 2005, Meyer 2001, and Strang 2005.
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